Question

Find the solution to the following system by converting the system to matrix form: x'1= 2x1+4x2,...

Find the solution to the following system by converting the system to matrix form:

x'1= 2x1+4x2, x1(0)=0

x'2= x1-x2, x2(0)=-2

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
2X1-X2+X3+7X4=0 -1X1-2X2-3X3-11X4=0 -1X1+4X2+3X3+7X4=0 a. Find the reduced row - echelon form of the coefficient matrix b....
2X1-X2+X3+7X4=0 -1X1-2X2-3X3-11X4=0 -1X1+4X2+3X3+7X4=0 a. Find the reduced row - echelon form of the coefficient matrix b. State the solutions for variables X1,X2,X3,X4 (including parameters s and t) c. Find two solution vectors u and v such that the solution space is \ a set of all linear combinations of the form su + tv.
Solve the system -2x1+4x2+5x3=-22 -4x1+4x2-3x3=-28 4x1-4x2+3x3=30 a)the initial matrix is: b)First, perform the Row Operation 1/-2R1->R1....
Solve the system -2x1+4x2+5x3=-22 -4x1+4x2-3x3=-28 4x1-4x2+3x3=30 a)the initial matrix is: b)First, perform the Row Operation 1/-2R1->R1. The resulting matrix is: c)Next perform operations +4R1+R2->R2 -4R1+R3->R3 The resulting matrix is: d) Finish simplyfying the augmented mantrix down to reduced row echelon form. The reduced matrix is: e) How many solutions does the system have? f) What are the solutions to the system? x1 = x2 = x3 =
Consider the following system of linear equations: 2x1−2x2+4x3 = −10 x1+x2−2x3 = 5 −2x1+x3 = −2...
Consider the following system of linear equations: 2x1−2x2+4x3 = −10 x1+x2−2x3 = 5 −2x1+x3 = −2 Let A be the coefficient matrix and X the solution matrix to the system. Solve the system by first computing A−1 and then using it to find X. You can resize a matrix (when appropriate) by clicking and dragging the bottom-right corner of the matrix.
Find the general solution to the following linear system around the equilibrium point: x '1 =...
Find the general solution to the following linear system around the equilibrium point: x '1 = 2x1 + x2 x '2 = −x1 + x2 (b) If the initial conditions are x1(0) = 1 and x2(0) = 1, find the exact solutions for x1 and x2. (c) Plot the exact vector field (precise amplitude of the vector) for at least 4 points around the equilibrium, including the initial condition. (d) Plot the solution curve starting from the initial condition x1(0)...
Find the fundamental system of solutions to the system. 2x1 − x2 + 3x3 + 2x4...
Find the fundamental system of solutions to the system. 2x1 − x2 + 3x3 + 2x4 + x5 = 0 x1 + 4x2 − x4 + 3x5 = 0 2x1 + 6x2 − x3 + 5x4 = 0 5x1 + 9x2 + 2x3 + 6x4 + 4x5 = 0.
Given a LP model as:Minimize Z = 2X1+ 4X2+ 6X3 Subject to: X1+2X2+ X3≥2 X1–X3≥1 X2+X3=...
Given a LP model as:Minimize Z = 2X1+ 4X2+ 6X3 Subject to: X1+2X2+ X3≥2 X1–X3≥1 X2+X3= 1 2X1+ X2≤3 X2, X3 ≥0, X1 urs a) Find the standard form of the LP problem. b) Find the starting tableau to solve the Primal LP problem by using the M-Technique.
Solving Systems via the Eigenvalue Method: Find the general solution to the following system of differential...
Solving Systems via the Eigenvalue Method: Find the general solution to the following system of differential equations. x'1 = 3x1 + 4x2 x'2 = 2x1 + x2
Which one of the following is the solution to the differential equation of a 2x1 matrix...
Which one of the following is the solution to the differential equation of a 2x1 matrix [x'(t) y'(t)]=the 2x2 matrix [2 3; 3 2][x(t) y(t)] with initial condition of a 2x1 matrix [x(0) y(0)]=the 2x1 matrix [2 4]?
Consider the following system of equations. x1- x2+ 3x3 =2 2x1+ x2+ 2x3 =2 -2x1 -2x2...
Consider the following system of equations. x1- x2+ 3x3 =2 2x1+ x2+ 2x3 =2 -2x1 -2x2 +x3 =3 Write a matrix equation that is equivalent to the system of linear equations. (b) Solve the system using the inverse of the coefficient matrix.
Find the (real-valued) general solution to the system of ODEs given by: X’=[{-1,-1},{2,-3}]X (X is a...
Find the (real-valued) general solution to the system of ODEs given by: X’=[{-1,-1},{2,-3}]X (X is a vector) -1,-1, is the 1st row of the matrix 2,-3, is the  2nd row of the matrix. Then, determine whether the equilibrium solution x1(t) = 0, x2(t) = 0 is stable, a saddle, or unstable.