Question

Let f be an R → R function. Tell the theorem about the relation of extreme...

Let f be an R → R function. Tell the theorem about the relation of extreme value of f at x0 ∈ D(f), and its first and second derivatives there. Demonstrate it (referring to its proof) in the case off(x)=2x3+3x2−36x+7atx0 =2.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Prove the following theorem: Theorem. Let a ∈ R and let f be a function defined...
Prove the following theorem: Theorem. Let a ∈ R and let f be a function defined on an interval centred at a. IF f is continuous at a and f(a) > 0 THEN f is strictly positive on some interval centred at a.
Let f(x) be a twice differentiable function (i.e. its first and second derivatives exist at all...
Let f(x) be a twice differentiable function (i.e. its first and second derivatives exist at all points). (a) What can you say about f(x) when f 0 (x) is positive? How about when f 0 (x) is negative? (b) What can you say about f 0 (x) when f 00(x) is positive? How about when f 00(x) is negative? (c) What can you say about f(x) when f 00(x) is positive? How about when f 00(x) is negative? (d) Let...
Let f(x) = x3 + 3x2 − 9x − 27 . The first and second derivatives...
Let f(x) = x3 + 3x2 − 9x − 27 . The first and second derivatives of f are given below. f(x) = x3 + 3x2− 9x − 27 = (x − 3)(x + 3)2 f '(x) = 3x2 + 6x − 9 = 3(x − 1)(x + 3) f ''(x) = 6x + 6 = 6(x + 1) a.) Find the x-intercepts on the graph of f. b.)Find the critical points of f. c.) Identify the possible inflection points...
Let (X, A) be a measurable space and f : X → R a function. (a)...
Let (X, A) be a measurable space and f : X → R a function. (a) Show that the functions f 2 and |f| are measurable whenever f is measurable. (b) Prove or give a counterexample to the converse statement in each case.
Let f be a function for which the first derivative is f ' (x) = 2x...
Let f be a function for which the first derivative is f ' (x) = 2x 2 - 5 / x2 for x > 0, f(1) = 7 and f(5) = 11. Show work for all question. a). Show that f satisfies the hypotheses of the Mean Value Theorem on [1, 5] b)Find the value(s) of c on (1, 5) that satisfyies the conclusion of the Mean Value Theorem.
Let f : R → R be defined by f(x) = x^3 + 3x, for all...
Let f : R → R be defined by f(x) = x^3 + 3x, for all x. (i) Prove that if y > 0, then there is a solution x to the equation f(x) = y, for some x > 0. Conclude that f(R) = R. (ii) Prove that the function f : R → R is strictly monotone. (iii) By (i)–(ii), denote the inverse function (f ^−1)' : R → R. Explain why the derivative of the inverse function,...
Let f:[0,1]——>R be define by f(x)= x if x belong to rational number and 0 if...
Let f:[0,1]——>R be define by f(x)= x if x belong to rational number and 0 if x belong to irrational number and let g(x)=x (a) prove that for all partitions P of [0,1],we have U(f,P)=U(g,P).what does mean about U(f) and U(g)? (b)prove that U(g) greater than or equal 0.25 (c) prove that L(f)=0 (d) what does this tell us about the integrability of f ?
Let f : R \ {1} → R be given by f(x) = 1 1 −...
Let f : R \ {1} → R be given by f(x) = 1 1 − x . (a) Prove by induction that f (n) (x) = n! (1 − x) n for all n ∈ N. Note: f (n) (x) denotes the n th derivative of f. You may use the usual differentiation rules without further proof. (b) Compute the Taylor series of f about x = 0. (You must provide justification by relating this specific Taylor series to...
Let f be the function given by f (x, y) = 4ay2 −x2y3 −x2 for all...
Let f be the function given by f (x, y) = 4ay2 −x2y3 −x2 for all (x, y) in R2, where a ∈ R. (a) Determine all stationary points to f when a = 0. (b) Determine all stationary points to f when a > 0. (c) Determine all stationary points to f when a < 0. (d) Determine the Taylor polynomial of the second order for f origin when a = −1.
Let B = { f: ℝ  → ℝ | f is continuous } be the ring of...
Let B = { f: ℝ  → ℝ | f is continuous } be the ring of all continuous functions from the real numbers to the real numbers. Let a be any real number and define the following function: Φa:B→R f(x)↦f(a) It is called the evaluation homomorphism. (a) Prove that the evaluation homomorphism is a ring homomorphism (b) Describe the image of the evaluation homomorphism. (c) Describe the kernel of the evaluation homomorphism. (d) What does the First Isomorphism Theorem for...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT