Question

Obtain the solution to the initial value problem kt + c(k)kx = 0, k(x,0) =(150 |x|...

Obtain the solution to the initial value problem kt + c(k)kx = 0,

k(x,0) =(150 |x| > 1

=150(1 + (1−|x|)/5) |x|≤ 1

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider the initial value problem mx′′+cx′+kx=F(t),   x(0)=0,   x′(0)=0 modeling the motion of a damped mass-spring system initially at...
Consider the initial value problem mx′′+cx′+kx=F(t),   x(0)=0,   x′(0)=0 modeling the motion of a damped mass-spring system initially at rest and subjected to an applied force F(t), where the unit of force is the Newton (N). Assume that m=2 kilograms, c=8 kilograms per second, k=80 Newtons per meter, and F(t)=30e−t Newtons. Solve the initial value problem. x(t)= Determine the long-term behavior of the system (steady periodic solution). Is limt→∞x(t)=0? If it is, enter zero. If not, enter a function that approximates x(t) for...
f(x)=kx/8, 0<x<5. Find the value of the constant k and Pr(1<x<3). *
f(x)=kx/8, 0<x<5. Find the value of the constant k and Pr(1<x<3). *
dx/dt=(1/4)x^3 -x, c(0)=1 compute the solution to this initial value problem. An algebraically implicit solution for...
dx/dt=(1/4)x^3 -x, c(0)=1 compute the solution to this initial value problem. An algebraically implicit solution for x(t) is acceptanle x(0)=1
Given (k is a constant): x + y + kz = 1 kx + y +...
Given (k is a constant): x + y + kz = 1 kx + y + z = 3 2kx + 4y + 4z = 3k +12 Find the values of "k" for which the system has: 1. A unique solution. 2. Infinitely many solutions. 3. No solution. b. Plug k = −2 and find the solution for the system c. Plug k = 0 and find the solutions for the system. d. Find the solution for k = 0...
The solution to the Initial value problem x′′+2x′+2x=2cos(7t),x(0)=0,x′(0)=0 is the sum of the steady periodic solution...
The solution to the Initial value problem x′′+2x′+2x=2cos(7t),x(0)=0,x′(0)=0 is the sum of the steady periodic solution xsp and the transient solution xtr. Find both xsp and xtr. xsp= xtr=
Solve the following initial value problem, showing all work. Verify the solution you obtain. y''-2y'+y=0;   y0=1,...
Solve the following initial value problem, showing all work. Verify the solution you obtain. y''-2y'+y=0;   y0=1, y'0=-2.
Find the solution of the initial-value problem. y'' + y = 4 + 3 sin(x), y(0)...
Find the solution of the initial-value problem. y'' + y = 4 + 3 sin(x), y(0) = 7, y'(0) = 1
Choose C so that y(t) = −1/(t + C) is a solution to the initial value...
Choose C so that y(t) = −1/(t + C) is a solution to the initial value problem y' = y2 y(2) = 3. Verify that the given formula is a solution to the initial value problem. x′ = −y, y′ = x, x(0) = 1, y(0) = 0: x(t) = cost, y(t) = sin t
differential equations find the solution to the initial value problem y’’ + y(x^2) = 0 y(0)...
differential equations find the solution to the initial value problem y’’ + y(x^2) = 0 y(0) = 0 y’(0) = 0
Consider the initial value problem given below. y' = (x+y+1)2 , y(0)= -1 The solution to...
Consider the initial value problem given below. y' = (x+y+1)2 , y(0)= -1 The solution to this initial value problem crosses the x-axis at a point in the interval [0, 1.4]. By experimenting with the improved Euler's method subroutine, determine this point to two decimal points.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT