Question

Use the Laplace Transform method to solve the following differential equation problem: y 00(t) − y(t)...

Use the Laplace Transform method to solve the following differential equation problem: y 00(t) − y(t) = t + sin(t), y(0) = 0, y0 (0) = 1

Please show partial fraction steps to calculate coeffiecients.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Use the Laplace transform to solve the following initial value problem: y′′ + 8y ′+ 16y...
Use the Laplace transform to solve the following initial value problem: y′′ + 8y ′+ 16y = 0 y(0) = −3 , y′(0) = −3 First, using Y for the Laplace transform of y(t)y, i.e., Y=L{y(t)}, find the equation you get by taking the Laplace transform of the differential equation __________________________ = 0 Now solve for Y(s) = ______________________________ and write the above answer in its partial fraction decomposition, Y(s) = A / (s+a) + B / ((s+a)^2) Y(s) =...
Use the Laplace transform to solve the following initial value problem y”+4y=cos(8t) y(0)=0, y’(0)=0 First, use...
Use the Laplace transform to solve the following initial value problem y”+4y=cos(8t) y(0)=0, y’(0)=0 First, use Y for the Laplace transform of y(t) find the equation you get by taking the Laplace transform of the differential equation and solving for Y: Y(s)=? Find the partial fraction decomposition of Y(t) and its inverse Laplace transform to find the solution of the IVP: y(t)=?
Use Laplace transform to solve the following initial value problem: y '' − 2y '+ 2y...
Use Laplace transform to solve the following initial value problem: y '' − 2y '+ 2y = e −t , y(0) = 0 and y ' (0) = 1 differential eq
use the Laplace transform to solve the initial value problem. (please provide details when applying partial...
use the Laplace transform to solve the initial value problem. (please provide details when applying partial fraction to solve this. I'm mostly having issues in partial fractions. Thank you!! y'' + y = sin2t,   y(0)= 0, y'(0)=1
Differential Equations: Use the Laplace transform to solve the given initial value problem: y′′ −2y′ +2y=cost;...
Differential Equations: Use the Laplace transform to solve the given initial value problem: y′′ −2y′ +2y=cost; y(0)=1, y′(0)=0
Given use Laplace transform to solve the following systems of differential equations. 2x' - y' -...
Given use Laplace transform to solve the following systems of differential equations. 2x' - y' - z' = 0 x' + y' = 4t + 2 y' + z = t2 + 2 SUBJECT = ORDINARY DIFFERENTIAL EQUATIONS TOPIC = LAPLACE TRANSFORM
Use the Laplace transform to solve the given initial-value problem. y'' + y = δ(t −...
Use the Laplace transform to solve the given initial-value problem. y'' + y = δ(t − 8π), y(0) = 0, y'(0) = 1
Consider the following initial value problem: y′′+49y={2t,0≤t≤7 14, t>7 y(0)=0,y′(0)=0 Using Y for the Laplace transform...
Consider the following initial value problem: y′′+49y={2t,0≤t≤7 14, t>7 y(0)=0,y′(0)=0 Using Y for the Laplace transform of y(t), i.e., Y=L{y(t)}, find the equation you get by taking the Laplace transform of the differential equation and solve for Y(s)=
Use the Laplace transform to solve the given initial-value problem. y'' − 6y' + 13y =...
Use the Laplace transform to solve the given initial-value problem. y'' − 6y' + 13y = 0,  y(0) = 0,  y'(0) = −5 #14 7.3 y(t) ? please show work and circle the answer
Given the differential equation y''−2y'+y=0,  y(0)=1,  y'(0)=2 Apply the Laplace Transform and solve for Y(s)=L{y} Y(s) =     Now...
Given the differential equation y''−2y'+y=0,  y(0)=1,  y'(0)=2 Apply the Laplace Transform and solve for Y(s)=L{y} Y(s) =     Now solve the IVP by using the inverse Laplace Transform y(t)=L^−1{Y(s)} y(t) =