Question

Evaluate the triple integral. 2 sin (2xy2z3) dV, where B B = (x, y, z) |...

Evaluate the triple integral.

2 sin (2xy2z3) dV, where
B

B =

(x, y, z) | 0 ≤ x ≤ 4, 0 ≤ y ≤ 2, 0 ≤ z ≤ 1

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1. Evaluate ???(triple integral) E x + y dV where E is the solid in the...
1. Evaluate ???(triple integral) E x + y dV where E is the solid in the first octant that lies under the paraboloid z−1+x2+y2 =0. 2.Evaluate ???(triple integral) square root ?x^2+y^2+z^2 dV where E lies above the cone z = square root x^2+y^2 and between the spheres x^2+y^2+z^2=1 and x^2+y^2+z^2=9
Evaluate the triple integral _ D sqrt(x^2+y^2+z^2) dV, where D is the solid region given by...
Evaluate the triple integral _ D sqrt(x^2+y^2+z^2) dV, where D is the solid region given by 1 (less than or equal to) x^2+y^2+z^2 (less than or equal to) 4.
7. Given The triple integral E (x^2 + y^2 + z^2 ) dV where E is...
7. Given The triple integral E (x^2 + y^2 + z^2 ) dV where E is bounded above by the sphere x 2 + y 2 + z 2 = 9 and below by the cone z = √ x 2 + y 2 . i) Set up using spherical coordinates. ii) Evaluate the integral
write and evaluate the triple integral for the function f(x,y,z) = z^2 bounded above by the...
write and evaluate the triple integral for the function f(x,y,z) = z^2 bounded above by the half-sphere x^2+y^2+z^2=4 and below by the disk x^2+y^4=4. Use spherical coordinates.
2. Evaluate the double integral Z Z R e ^(x^ 2+y ^2) dA where R is...
2. Evaluate the double integral Z Z R e ^(x^ 2+y ^2) dA where R is the semicircular region bounded by x ≥ 0 and x^2 + y^2 ≤ 4. 3. Find the volume of the region that is bounded above by the sphere x^2 + y^2 + z^2 = 2 and below by the paraboloid z = x^2 + y^2 . 4. Evaluate the integral Z Z R (12x^ 2 )(y^3) dA, where R is the triangle with vertices...
1.Set up the bounds for the following triple integral: R R R E (2y)dV where E...
1.Set up the bounds for the following triple integral: R R R E (2y)dV where E is bounded by the planes x = 0, y = 0, z = 0, and 3 = 4x + y + z. Do NOT integrate. 2.Set up the triple integral above as one of the other two types of solids E.
Use the Midpoint Rule for the triple integral to estimate the value of the integral. Divide...
Use the Midpoint Rule for the triple integral to estimate the value of the integral. Divide B into eight sub-boxes of equal size. (Round your answer to three decimal places.)    1 ln(1 + 2x + 5y + z) dV, where B B = (x, y, z) | 0 ≤ x ≤ 4, 0 ≤ y ≤ 8, 0 ≤ z ≤ 4
Problem 7. Consider the line integral Z C y sin x dx − cos x dy....
Problem 7. Consider the line integral Z C y sin x dx − cos x dy. a. Evaluate the line integral, assuming C is the line segment from (0, 1) to (π, −1). b. Show that the vector field F = <y sin x, − cos x> is conservative, and find a potential function V (x, y). c. Evaluate the line integral where C is any path from (π, −1) to (0, 1).
Set up the triple integral, including limits, of the function over the region. f(x, y, z)...
Set up the triple integral, including limits, of the function over the region. f(x, y, z) = sin z, x ≥ 0, y ≥ 0, and below the plane 2x + 2y + z = 2
Having trouble understanding. (1 point) Evaluate the triple integral ∭E(xy)dV where E is the solid tetrahedon...
Having trouble understanding. (1 point) Evaluate the triple integral ∭E(xy)dV where E is the solid tetrahedon with vertices (0,0,0),(10,0,0),(0,6,0),(0,0,8).