Question

A ship leaves port and travels due north at 15 knots for two hours. Then it changes course to N 15° W. After another two hours the ship stops. Draw a diagram that shows the path the ship has sailed. What is the ships current distance from port?

Answer #1

Please do like the answer ??

Ships A and B leave port together. For the next two hours, ship
A travels at 24 mph in a direction 30 degrees west of north while
ship B travels 28 degrees east of north at 29 mph .
a)What is the distance between the two ships two hours after
they depart?
b) What is the speed of ship A as seen by ship B?

Ships A and B leave port together. For the next 4 hours, ship A
travels at 35 mph in a direction 40 degrees east of north while
ship B travels 70 degrees north of west at 25 mph. What is the
distance, in mi, between the two ships 4 hours after they
depart?

At noon, ship A is 40 nautical miles due west of ship B. Ship A
is sailing west at 25 knots and ship B is sailing north at 20
knots. How fast (in knots) is the distance between the ships
changing at 4 PM? (Note: 1 knot is a speed of 1 nautical mile per
hour.)
Note: Draw yourself a diagram which shows where the ships are at
noon and where they are "some time" later on. You will need...

Two ships are on a collision course. At noon, ship A is
positioned 88 nautical miles (NM) due north of the collision point
and Ship B is 15 NM due east of the collision point. Ship A is
moving south with a constant speed of 16 knots.Ship B traveling
west with a constant speed of 30 knots. Calculate the rate of
change of the distance D between the ships at noon. dD/dt=?

Two ships leave a port at 9 a.m. One travels at a bearing of N
53° W at 13 miles per hour, and the other travels at a bearing of S
67° W at s miles per hour.
(a) Use the Law of Cosines to write an equation that relates s
and the distance d between the two ships at noon.
(b) Find the speed s that the second ship must travel so that
the ships are 42 miles apart...

One ship is approaching a port from the east, traveling west at
15 miles per hour, and is presently 3 miles east of the port. A
second ship has already left the port, traveling to the north at 10
miles per hour, and is presently 4 miles north of the port. At this
instant, what is the rate of change of the distance between two
ships? Are they getting closer or further apart?

Two ships leave a harbor at the same time. One ship travels on a
bearing S10°W at 12 miles per hour. The other ship travels on a
bearing N75°E at 10 miles per hour. How far apart will the ships be
after 3 hours?

Two aircraft leave an
airfield at the same time. One travels due north at an average
velocity of 84 m s-1 and the other travels due east at
an average velocity of 70 m s-1. Calculate the distance
between the planes after 6 hours. Give your answer in km, to the
nearest km.
Answer km

7. Two cars start moving from the same point. One travels north
at speed of 15 mi/hand the other travels east at 20 mi/h. At what
rate is the distance between the cars increasing two hours
later?

DIRECTIONS: This is an open book, take home examination. You may
look up the answers and discuss them, if you wish. The Multiple
Choice questions will be worth 1 point each and the essay questions
will be worth 25 points each. This examination is over Chapters 6
through 9. MULTIPLE CHOICE: 1. During Piaget's concrete operational
stage, children a. are more egocentric than they were during the
preoperational period. b. often confuse appearances with reality.
c. are unable to reverse...

ADVERTISEMENT

Get Answers For Free

Most questions answered within 1 hours.

ADVERTISEMENT

asked 8 minutes ago

asked 12 minutes ago

asked 12 minutes ago

asked 13 minutes ago

asked 16 minutes ago

asked 16 minutes ago

asked 23 minutes ago

asked 25 minutes ago

asked 28 minutes ago

asked 35 minutes ago

asked 35 minutes ago

asked 42 minutes ago