Question

Suppose that F is an algebra on some sample space . Prove each of the following....

Suppose that F is an algebra on some sample space . Prove each of the following.

(a) the empty set is an element of F .

(b) AUBUC whenever A,B,C is an element of F .

(c) A1UA2UA3....UAn is an element of F whenever A1,A2............An is an element of F .

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1.- Prove the intermediate value theorem: let (X, τ) be a connected topological space, f: X...
1.- Prove the intermediate value theorem: let (X, τ) be a connected topological space, f: X - → Y a continuous transformation and x1, x2 ∈ X with a1 = f (x1), a2 = f (x2) ( a1 different a2). Then for all c∈ (a1, a2) there is x∈ such that f (x) = c. 2.- Let f: X - → Y be a continuous and suprajective transformation. Show that if X is connected, then Y too.
good evening if Ω is a sample space, τ is a σ-algebra over Ω and Ω’...
good evening if Ω is a sample space, τ is a σ-algebra over Ω and Ω’ is a non-empty subset of Ω. Show that the following set is also a σ-algebra over Ω’ τ’ = {Α n Ω’ : Α belongs to τ} I’m stucked in the compliment part, if B is in τ’ then compliment of B is in τ’. Could you please help me!
Suppose S is a sample space and f (E) = n(E) for each event E of...
Suppose S is a sample space and f (E) = n(E) for each event E of S. Prove that f is a probability n(S) function by verifying that it obeys the three axioms.
Linear Algebra: Using the 10 Vector Space Axioms, prove that if u is a vector in...
Linear Algebra: Using the 10 Vector Space Axioms, prove that if u is a vector in vector space V, then 0u=0 State which Axiom applies to each step of the proof
Let F be a field (for instance R or C), and let P2(F) be the set...
Let F be a field (for instance R or C), and let P2(F) be the set of polynomials of degree ≤ 2 with coefficients in F, i.e., P2(F) = {a0 + a1x + a2x2 | a0,a1,a2 ∈ F}. Prove that P2(F) is a vector space over F with sum ⊕ and scalar multiplication defined as follows: (a0 + a1x + a2x^2)⊕(b0 + b1x + b2x^2) = (a0 + b0) + (a1 + b1)x + (a2 + b2)x^2 λ (b0 +...
4. Prove the Following: a. Prove that if V is a vector space with subspace W...
4. Prove the Following: a. Prove that if V is a vector space with subspace W ⊂ V, and if U ⊂ W is a subspace of the vector space W, then U is also a subspace of V b. Given span of a finite collection of vectors {v1, . . . , vn} ⊂ V as follows: Span(v1, . . . , vn) := {a1v1 + · · · + anvn : ai are scalars in the scalar field}...
Let (X, A) be a measurable space and f : X → R a function. (a)...
Let (X, A) be a measurable space and f : X → R a function. (a) Show that the functions f 2 and |f| are measurable whenever f is measurable. (b) Prove or give a counterexample to the converse statement in each case.
a)Suppose U is a nonempty subset of the vector space V over field F. Prove that...
a)Suppose U is a nonempty subset of the vector space V over field F. Prove that U is a subspace if and only if cv + w ∈ U for any c ∈ F and any v, w ∈ U b)Give an example to show that the union of two subspaces of V is not necessarily a subspace.
Let f : X → Y and suppose that {Ai}i∈I is an indexed collection of subsets...
Let f : X → Y and suppose that {Ai}i∈I is an indexed collection of subsets of X. Show that f[∩i∈IAi ] ⊆ ∩i∈I f[Ai ]. Give an example, using two sets A1 and A2, to show that it’s possible for the LHS to be empty while the RHS is non-empty.
Let (Ω, F , P) be a probability space. Suppose that Ω is the collection of...
Let (Ω, F , P) be a probability space. Suppose that Ω is the collection of all possible outcomes of a single iteration of a certain experiment. Also suppose that, for each C ∈ F, the probability that the outcome of this experiment is contained in C is P(C). Consider events A, B ∈ F with P(A) + P(B) > 0. Suppose that the experiment is iterated indefinitely, with each iteration identical and independent of all the other iterations, until...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT