Question

Given: A =   1 −1 −2 3 B =   1 5 8 −8 C =   1...

Given:

A =  

1 −1
−2 3

B =  

1 5
8 −8

C =  

1 2
3 4

Solve:

AX + B = C

X =

Homework Answers

Answer #1

Given A = , B = and C =

Let X =

Given AX + B = C

Thus, AX = C - B

= -

=  

Equating we get

a - c = 0 implies a = c

And -2a +3c = -5

-2a +3a = -5 implies a = -5

Thus, a = c = -5

Also that b -d = -3 implies b = -3+d

And -2b + 3d = 12

-2(-3+d) + 3d = 12

6 -2d +3d = 12

d = 12 - 6 = 6

So, b = -3+6 = 3

Thus, a = -5 , b = 3 , c = -5 and d = 6

Hence, X =

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let A = [1 5 ; 3 1 ; 2 -4] and b = [1 ;...
Let A = [1 5 ; 3 1 ; 2 -4] and b = [1 ; 0 ; 3] (where semicolons represent a new row) Is equation Ax=b consistent? Let b(hat) be the orthogonal projection of b onto Col(A). Find b(hat). Let x(hat) the least square solution of Ax=b. Use the formula x(hat) = (A^(T)A)^(−1) A^(T)b to compute x(hat). (A^(T) is A transpose) Verify that x(hat) is the solution of Ax=b(hat).
QUESTION 17 If A = { 1, 2, 3, 4 }    B = {  3, 4, 5...
QUESTION 17 If A = { 1, 2, 3, 4 }    B = {  3, 4, 5 }   C = { 5, 7, 8, 9 } then A ∩   C U  B  equals { 3, 5 } { 3, 4, 5 } { 4, 5 } None of the above QUESTION 19 What is the Cartesian product A x B given  A = {1, 2} and B = {a, b}? { (1, a), (1, b), (2, a), (b, b) (a, a)} { (1, 1), (2, 2),...
Given: x = 2, 1, 5, 3 y = -4, 3, 2, 1 b = 2...
Given: x = 2, 1, 5, 3 y = -4, 3, 2, 1 b = 2 Determine the following: a) Σx =   b) Σy =   c) Σbx + Σby =   d) (Σy)3 =   e) Σ(x + y)2 =   f) [Σ(x + y)]2 =  
Solve the equation Ax = b by using the LU factorization given for A. A= [4  ...
Solve the equation Ax = b by using the LU factorization given for A. A= [4   -6 4         =   [1 0 0       [4 -6 4               [0      -12 15 -7              -3 1 0        0 -3 5         b= 12       12 -15 8]             3 -1 1]       0 0 1]             -12] Let Ly=b and Ux=y. Solve for x and y. y= x=
3) If A =     3   1     and   B =    1    7                   0 -2  &
3) If A =     3   1     and   B =    1    7                   0 -2                     5    -1 Find a)      BA            b) determinant B         c) Adjoint A                d) A-1                     4) Using matrix method solve the following simultaneous equations                           5x – 3y = 1                         2x – 2y = -2    5) Given that f(x) = 6x - 5 g(x) = 3x + 4 and h(x) = 4x – 6                                                                                          2     Find:- i)...
Show that if a, b, c are real numbers such that b > (1/3)a^2 , then...
Show that if a, b, c are real numbers such that b > (1/3)a^2 , then the cubic equation x^3 + ax^2 + bx + c = 0 has precisely one real root
a = [-5, -3, 2] b = [1, -7, 9] c = [7, -2, -3] d...
a = [-5, -3, 2] b = [1, -7, 9] c = [7, -2, -3] d = [4, -1, -9, -3] e = [-2, -7, 5, -3] a. Find (d) (e) b. Find (3a) (7c) c. Find Pe --> d d. Find Pc --> a +2b ex. C = |x|(xy/xy) C = xy/|x| ex. P x --> y = Cux = C(xy/x) (1/|x|) (x) =( xy/yy)(y)
Solve the given initial-value problem. X' = 10   −1 5 8 X,    X(0) = −2 4 X(t)...
Solve the given initial-value problem. X' = 10   −1 5 8 X,    X(0) = −2 4 X(t) =
Given a matrix system AX = B as below, where A is a 4 x 4...
Given a matrix system AX = B as below, where A is a 4 x 4 matrix as given below A: 2          1          0          0 1          2          1          0 0          2          4          1 0          0          1          3 B: 0         -1 3 -1 Solve for all 4 X values using TDMA algorithm First identify the a, d, c and b values for each row, and then find P’s and Q’s and finally determine X’s.
1. 4(x+1)^2+5(x+1)-8 = 4(-x)^2+5(-x)-8= 4(x^3)^2+5(x^3)-8= 2. f(x)= { x^2 if x<0.   x+9 if x>=0} f(-2) =...
1. 4(x+1)^2+5(x+1)-8 = 4(-x)^2+5(-x)-8= 4(x^3)^2+5(x^3)-8= 2. f(x)= { x^2 if x<0.   x+9 if x>=0} f(-2) = f(-1) = f(0)= f(1)= f(2)= 3. f(x)= {x^2 +8x if x<= -1. X If -1< x<=1. -1 if x>b1} F(-3)= F(-3/2)= F(-1) = F(40) = 4. F(x)= 6x-7 f(2x)= 2f(x)=