Question

Consider the function f(x,y) = -8x^2-8y^2+x+y Select all that apply: 1. The function has two critical...

Consider the function f(x,y) = -8x^2-8y^2+x+y

Select all that apply:

1. The function has two critical points

2. The function has a saddle point

3. The function has a local maximum

4. The function has a local minimum

5. The function has one critical point

*Please show your work so I can follow along*

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let f(x,y) = 3x^2y − 2y^2 − 3x^2 − 8y + 2. (i) Find the stationary...
Let f(x,y) = 3x^2y − 2y^2 − 3x^2 − 8y + 2. (i) Find the stationary points of f. (ii) For each stationary point P found in (i), determine whether f has a local maximum, a local minimum, or a saddle point at P. Answer: (i) (0, −2), (2, 1), (−2, 1) (ii) (0, −2) loc. max, (± 2, 1) saddle points
Find the Critical point(s) of the function f(x, y) = x^2 + y^2 + xy -...
Find the Critical point(s) of the function f(x, y) = x^2 + y^2 + xy - 3x - 5. Then determine whether each critical point is a local maximum, local minimum, or saddle point. Then find the value of the function at the extreme(s).
2. Consider the function f(x, y) = x 2 + cos(πy). (a) Find all the Critical...
2. Consider the function f(x, y) = x 2 + cos(πy). (a) Find all the Critical Points of f and (b) Classify them as local maximum/minimum or neither
Find all local maximum or local minimum or saddle point for f(x,y)= 8y^3 + 12x^2 -24xy
Find all local maximum or local minimum or saddle point for f(x,y)= 8y^3 + 12x^2 -24xy
Find the location of the critical point of the function f(x,y)= kx^(2)+3y^(2)-2xy-24y (in terms of k)...
Find the location of the critical point of the function f(x,y)= kx^(2)+3y^(2)-2xy-24y (in terms of k) of t. The classify the values of k for which the critical point is a: I) Saddle Point II) Local Minimum III) Local Maximum
Consider the function below. y=f(x)= x/x^2+x+1 Find all critical numbers of (f), if any. Find interval(s)...
Consider the function below. y=f(x)= x/x^2+x+1 Find all critical numbers of (f), if any. Find interval(s) on which f is decreasing Final all local maximum/minimum points of f.
If f(x,y)=(5∗x3+4∗y3+4∗x∗y+1) find the critical point for f(x,y) x=____ y=____ Is this critical point a local...
If f(x,y)=(5∗x3+4∗y3+4∗x∗y+1) find the critical point for f(x,y) x=____ y=____ Is this critical point a local maximum, local minimum, or saddle point?
Consider the following function. g(x, y)  =  e− 4x^2 + 4y^2 + 8 √ 8y (a)...
Consider the following function. g(x, y)  =  e− 4x^2 + 4y^2 + 8 √ 8y (a) Find the critical point of g. If the critical point is (a, b) then enter 'a,b' (without the quotes) into the answer box. (b) Using your critical point in (a), find the value of D(a, b) from the Second Partials test that is used to classify the critical point. (c) Use the Second Partials test to classify the critical point from (a). A) Saddle...
Given the function f (x, y) = ax^2 2 + 2xy + ay.y 2-ax-ay. Take for...
Given the function f (x, y) = ax^2 2 + 2xy + ay.y 2-ax-ay. Take for a an integer value that is either greater than 1 or less than -1, and then determine the critical point of this function. Then indicate whether it is is a local maximum, a local minimum or a saddle point. Given the function f (x, y) = ax^2 +2 + 2xy + ay^2-2-ax-ay. Take for a an integer value that is either greater than 1...
For the questions below, consider the following function. f (x) = 3x^4 - 8x^3 + 6x^2...
For the questions below, consider the following function. f (x) = 3x^4 - 8x^3 + 6x^2 (a) Find the critical point(s) of f. (b) Determine the intervals on which f is increasing or decreasing. (c) Determine the intervals on which f is concave up or concave down. (d) Determine whether each critical point is a local maximum, a local minimum, or neither.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT