Question

1.Find all solutions on the interval [0, 2π) csc (2x)-9=0 2. Rewrite in terms of sin(x)...

1.Find all solutions on the interval [0, 2π)

csc (2x)-9=0

2. Rewrite in terms of sin(x) and cos(x)

Sin (x +11pi/6)

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
(a) Rewrite the expression as an algebraic expression in x tan(sin-1(x)) (b) Find sin(2x), cos(2x) and...
(a) Rewrite the expression as an algebraic expression in x tan(sin-1(x)) (b) Find sin(2x), cos(2x) and tan (2x) from the given information csc(x)=4, tan(x)<0
1) In the interval [0,2π) find all the solutions possible (in radians ) : a) sin(x)=...
1) In the interval [0,2π) find all the solutions possible (in radians ) : a) sin(x)= √3/2 b) √3 cot(x)= -1 c) cos ^2 (x) =-cos(x) 2)The following exercises show a method of solving an equation of the form: sin( AxB C + ) = , for 0 ≤ x < 2π . Find ALL solutions . d) sin(3x) = - 1/2 e) sin(x + π/4) = - √2 /2 f) sin(x/2 - π/3) = 1/2
For the following exercises, find all exact solutions on [0, 2π) 23. sec(x)sin(x) − 2sin(x) =...
For the following exercises, find all exact solutions on [0, 2π) 23. sec(x)sin(x) − 2sin(x) = 0 25. 2cos^2 t + cos(t) = 1 31. 8sin^2 (x) + 6sin(x) + 1 = 0 32. 2cos(π/5 θ) = √3
1, Solve cos(x)=0.17cos(x)=0.17 on 0≤x<2π0≤x<2π There are two solutions, A and B, with A < B...
1, Solve cos(x)=0.17cos(x)=0.17 on 0≤x<2π0≤x<2π There are two solutions, A and B, with A < B 2, Find the EXACT value of cos(A−B)cos(A-B) if sin A = 3434, cos A = √7474, sin B = √91109110, and cos B = 310310. cos(A−B)cos(A-B) = 3, Find all solutions of the equation 2cosx−1=02cosx-1=0 on 0≤x<2π0≤x<2π The answers are A and B, where A<BA<B A=? B=?
PLEASE SOLVE ALL 8 QUESTIONS SHOWING STEP-BY-STEP SOLUTIONS. Solve for the unknown variable on the interval...
PLEASE SOLVE ALL 8 QUESTIONS SHOWING STEP-BY-STEP SOLUTIONS. Solve for the unknown variable on the interval 0 is (less than or equal to) x (less than or equal to) 2pi. 1. 4 cos^2 x - 3 =0 2. Square root of 2 sin 2x = 1 3. 3cot^2 x-1 = 0 4. cos^3 x = cos x 5. sin x - 2sin x cos x = 0 6. 2sin^2 x- sin x-3 = 0 7. csc^2 x- csc x -...
Let f(x)=sin x-cos x,0≤x≤2π Find all inflation point(s) of f. Find all interval(s) on which f...
Let f(x)=sin x-cos x,0≤x≤2π Find all inflation point(s) of f. Find all interval(s) on which f is concave downward.
Solve 5cos(2x)=5cos2(x)−15cos(2x)=5cos2(x)-1 for all solutions 0≤ x <2π
Solve 5cos(2x)=5cos2(x)−15cos(2x)=5cos2(x)-1 for all solutions 0≤ x <2π
Suppose you know that f′(x) = x sin(2x) − sin(2x). Find the x-coordinates of all local...
Suppose you know that f′(x) = x sin(2x) − sin(2x). Find the x-coordinates of all local maximums of f in the interval (0, 2π).
1.Given cos(x) = 1/6 with 3π/2 < x < 2π. Find the value of cos(2x). 2....
1.Given cos(x) = 1/6 with 3π/2 < x < 2π. Find the value of cos(2x). 2. which of the following is equivalent to: (8sin(x) + 8 cos(x))^2? 3. which of the following is equivalent to: 12cos(-x)sin(-x)/tan(-x)cot(x+9π)
Consider the function on the interval (0, 2π). f(x) = sin(x) cos(x) + 4. (A) Find...
Consider the function on the interval (0, 2π). f(x) = sin(x) cos(x) + 4. (A) Find the open interval(s) on which the function is increasing or decreasing. (Enter your answers using interval notation.) (B) Apply the First Derivative Test to identify all relative extrema.