Question

For the parametric curve x(t) = 2−5cos(t), y(t) = 1 + 3sin(t), t ∈ [0,2π) Part...

For the parametric curve x(t) = 2−5cos(t), y(t) = 1 + 3sin(t), t ∈ [0,2π)

Part a: Give an equation relating x and y that represents the curve.

Part b: Find the slope of the tangent line to the curve when t = π/6 .

Part c: State the points (x,y) where the tangent line is horizontal.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
7. For the parametric curve x(t) = 2 − 5 cos(t), y(t) = 1 + 3...
7. For the parametric curve x(t) = 2 − 5 cos(t), y(t) = 1 + 3 sin(t), t ∈ [0, 2π) Part a: (2 points) Give an equation relating x and y that represents the curve. Part b: (4 points) Find the slope of the tangent line to the curve when t = π 6 . Part c: (4 points) State the points (x, y) where the tangent line is horizontal
Consider the parametric curve C defined by the parametric equations x = 3cos(t)sin(t) and y =...
Consider the parametric curve C defined by the parametric equations x = 3cos(t)sin(t) and y = 3sin(t). Find the expression which represents the tangent of line C. Write the equation of the line that is tangent to C at t = π/ 3.
Find the derivative of the parametric curve x=2t-3t2, y=cos(3t) for 0 ≤ ? ≤ 2?. Find...
Find the derivative of the parametric curve x=2t-3t2, y=cos(3t) for 0 ≤ ? ≤ 2?. Find the values for t where the tangent lines are horizontal on the parametric curve. For the horizontal tangent lines, you do not need to find the (x,y) pairs for these values of t. Find the values for t where the tangent lines are vertical on the parametric curve. For these values of t find the coordinates of the points on the parametric curve.
4) Consider the polar curve r=e2theta a) Find the parametric equations x = f(θ), y =...
4) Consider the polar curve r=e2theta a) Find the parametric equations x = f(θ), y = g(θ) for this curve. b) Find the slope of the line tangent to this curve when θ=π. 6) a)Suppose r(t) = < cos(3t), sin(3t),4t >. Find the equation of the tangent line to r(t) at the point (-1, 0, 4pi). b) Find a vector orthogonal to the plane through the points P (1, 1, 1), Q(2, 0, 3), and R(1, 1, 2) and the...
On the parametric curve (x(t), y(t)) = (t − t^2 , t^2 + 3t) pictured below,...
On the parametric curve (x(t), y(t)) = (t − t^2 , t^2 + 3t) pictured below, determine the (x, y)-coordinates of the marked point where the tangent line is horizontal.
Consider the parametric curve given by the equations: x = tsin(t) and y = t cos(t)...
Consider the parametric curve given by the equations: x = tsin(t) and y = t cos(t) for 0 ≤ t ≤ 1 (a) Find the slope of a tangent line to this curve when t = 1. (b) Find the arclength of this curve
two part question: a) graph the parametric equation x=t2-t , y=t2+t+1 only on the interval -1<t<2...
two part question: a) graph the parametric equation x=t2-t , y=t2+t+1 only on the interval -1<t<2 b) find an equation of the tangent line to the curve at the point (0,3)
Consider the parametric equations x = 5 - t^2 , y = t^3 - 48t a....
Consider the parametric equations x = 5 - t^2 , y = t^3 - 48t a. Find dy dx and d 2y dx2 , and determine for what values of t is the curve concave up, and when is it concave down. b. Find where is the tangent line horizontal, and where is it vertical.
1. Graph the curve given in parametric form by x = e t sin(t) and y...
1. Graph the curve given in parametric form by x = e t sin(t) and y = e t cos(t) on the interval 0 ≤ t ≤ π2. 2. Find the length of the curve in the previous problem. 3. In the polar curve defined by r = 1 − sin(θ) find the points where the tangent line is vertical.
Consider the parametric curve x = t2, y = t3 + 3t, −∞ < t <...
Consider the parametric curve x = t2, y = t3 + 3t, −∞ < t < ∞. (a) Find all of the points where the tangent line is vertical. (b) Find d2y/dx2 at the point (1, 4). (c) Set up an integral for the area under the curve from t = −2 to t = −1. (d) Set up an integral for the length of the curve from t=−1 to t=1.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT