Question

According to Newton's Law of Cooling A cup of coffee with temperature of 130F is placed...

According to Newton's Law of Cooling

A cup of coffee with temperature of 130F is placed in a freezer with temperature 0F. After 5 minutes, the temperature of the coffee is 87F. Find the coffee's temperature

after 10 minutes.

Homework Answers

Answer #1

Answer:- T(10) = 58.237

According to Newton's Cooling Law

T(t) = Ta+(To-Ta)e-kt

where:

t is Time

Ta is the (constant) ambient temperature

To is the initial temperature of the object

k is a proportionality constant

Given:-  

T(5 Minutes) = 87

Ta = 0F

To = 130F

T(5) = 87 = 0 + (130 - 0 )e-k(5)

I will solve this for k (in the units I have chosen):

87 = 0 + 130e-5k

0.6692 = e-5k

ln(0.6692) = lne-5k

-0.40167 = -5k

k = 0.08033

Then at t = 10 minutes

T(t) = 130e-(0.08033)t

T(10) = 130e-(0.08033)10

T(10) = 58.237F

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
If a cup of coffee has temperature 100°C in a room where the ambient air temperature...
If a cup of coffee has temperature 100°C in a room where the ambient air temperature is 21°C, then, according to Newton's Law of Cooling, the temperature of the coffee after t minutes is T ( t ) = 21 + 79 e − t / 45 . What is the average temperature of the coffee during the first 14 minutes?
(1 point) Newton's Law of Cooling states that the rate of cooling of an object is...
(1 point) Newton's Law of Cooling states that the rate of cooling of an object is proportional to the temperature difference between the object and its surroundings. Suppose t is time, T is the temperature of the object, and Ts is the surrounding temperature. The following differential equation describes Newton's Law dT/dt=k(T−Ts), where k is a constant. Suppose that we consider a 95∘C cup of coffee in a 25∘C room. Suppose it is known that the coffee cools at a...
Newton's law of cooling states that the temperature of an object changes at a rate proportional...
Newton's law of cooling states that the temperature of an object changes at a rate proportional to the different between its temperature and that of its surroundings. Suppose that the temperature of a cup of coffee obeys Newton's law of cooling. If the coffee has a temperature of 200 degrees F when freshly poured, and 1 min later has cooled to 190 degrees F in a room at 70 degrees F, determine when the coffee reaches a temperature of 150...
Newton's Law of Cooling tells us that the rate of change of the temperature of an...
Newton's Law of Cooling tells us that the rate of change of the temperature of an object is proportional to the temperature difference between the object and its surroundings. This can be modeled by the differential equation dTdt=k(T−A)dTdt=k(T-A), where TT is the temperature of the object after tt units of time have passed, AA is the ambient temperature of the object's surroundings, and kk is a constant of proportionality. Suppose that a cup of coffee begins at 179179 degrees and,...
A cup of coffee has a temperature of 200F. It is placed in a room that...
A cup of coffee has a temperature of 200F. It is placed in a room that has temperature 70 F. After 15 minutes, the temperature of the coffee is 150F. a) Model the temperature of the cup of coffee at time t. b) How long will it take for the coffee to cool down to 100◦ F?
In 1701, Issac Newton proved his Law of Cooling: T(t) =Aekt +Ta, which is an exponential...
In 1701, Issac Newton proved his Law of Cooling: T(t) =Aekt +Ta, which is an exponential model that relates the temperature of an object T as a function of time t (we will use minutes) that is placed in an environment with ambient temperature Ta. Suppose a cup of hot coffee is served at 160◦F and placed in a room with an ambient temperature 75◦. After 5 minutes, the cup of coffee has a temperature of 131◦F. a) Create a...
This exercise uses Newton's Law of Cooling. Newton's Law of Cooling is used in homicide investigations...
This exercise uses Newton's Law of Cooling. Newton's Law of Cooling is used in homicide investigations to determine the time of death. The normal body temperature is 98.6°F. Immediately following death, the body begins to cool. It has been determined experimentally that the constant in Newton's Law of Cooling is approximately k = 0.1947, assuming time is measured in hours. Suppose that the temperature of the surroundings is 55°F. (a) Find a function T(t) that models the temperature  t hours after...
Newton's Law of Cooling. A red bull is taken out of an ice chest with a...
Newton's Law of Cooling. A red bull is taken out of an ice chest with a temperature of 38°F and placed on a picnic table with a surrounding temperature of 75°F. After 5 minutes, the temperature of the drink is 45°F. What will the temperature of the drink be 20 minutes of after it is taken out of the chest? Round to the nearest degree. How long until the drink reaches the undrinkable temperature of 70°F? Round to the nearest...
PYTHON Newton's (inaccurate!) law of cooling says that the temperature of an object changes at a...
PYTHON Newton's (inaccurate!) law of cooling says that the temperature of an object changes at a rate proportional to the difference between its temperature and that of the surrounding medium (the ambient temperature). So the change in temperature of an object with respect to time can be written as: dT/dt = -k(T - Ta) where: T = the temperature of the object t = elapsed time k = the proportionality constant (an empirical value derived from the liquid and cup...
A 210 degree cup of coffee is placed on a table in a climate-controlled room with...
A 210 degree cup of coffee is placed on a table in a climate-controlled room with the temperature set at a constant 73 degrees. After 6 minutes, the temperature of the coffee had dropped to 150 degrees. Find a function that outputs the temperature of the coffee t minutes after it is placed on the table.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT