Question

Let V be a vector subspace of R^n for some n?N. Show that if k>dim(V) then...

Let V be a vector subspace of R^n for some n?N. Show that if k>dim(V) then the set of any k vectors in V is dependent.

Homework Answers

Answer #1

We know that dimension of a vector space is defined to be the cardinality of (ie, number of items in) its basis.

We also know that every linearly independent set can be extended to a basis by appending some or no vectors to the set. (Theorem)

Therefore, since size of the independent set (let's call this set as S) is k and it is strictly greater than V, we can write k = dim(V) + n1 (where n1 is a positive integer). From the theorem stated above, we know that there exist D vectors (D being a whole number) which when appended to set S makes it a basis (say B)

then since by definition of dimension of vector space, dim(V) = size(B) = dim(V)+n1+D

which would imply n1+D = 0, implying n1 = 0 which is a contradiction. Therefore the supposition that more than dim(V) vectors can be independent in a dim(V) dimensional space is contradictory.

Proof Completes here :)

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let U be a vector space and V a subspace of U. (a) Assume dim(U) <...
Let U be a vector space and V a subspace of U. (a) Assume dim(U) < ∞. Show that if dim(V ) = dim(U) then V = U. (b) Assume dim(U) = ∞ and dim(V ) = ∞. Give an example to show that it may happen that V 6= U.
Suppose V is a vector space over F, dim V = n, let T be a...
Suppose V is a vector space over F, dim V = n, let T be a linear transformation on V. 1. If T has an irreducible characterisctic polynomial over F, prove that {0} and V are the only T-invariant subspaces of V. 2. If the characteristic polynomial of T = g(t) h(t) for some polynomials g(t) and h(t) of degree < n , prove that V has a T-invariant subspace W such that 0 < dim W < n
Let V be a vector space of dimension n > 0, show that (a) Any set...
Let V be a vector space of dimension n > 0, show that (a) Any set of n linearly independent vectors in V forms a basis. (b) Any set of n vectors that span V forms a basis.
Let V be a vector space with dimV = n. Show that : Any spanning set...
Let V be a vector space with dimV = n. Show that : Any spanning set for V consisting of exactly n vectors is a basis for V.
Let V and W be finite-dimensional vector spaces over F, and let φ : V →...
Let V and W be finite-dimensional vector spaces over F, and let φ : V → W be a linear transformation. Let dim(ker(φ)) = k, dim(V ) = n, and 0 < k < n. A basis of ker(φ), {v1, . . . , vk}, can be extended to a basis of V , {v1, . . . , vk, vk+1, . . . , vn}, for some vectors vk+1, . . . , vn ∈ V . Prove that...
1. Let T be a linear transformation from vector spaces V to W. a. Suppose that...
1. Let T be a linear transformation from vector spaces V to W. a. Suppose that U is a subspace of V, and let T(U) be the set of all vectors w in W such that T(v) = w for some v in V. Show that T(U) is a subspace of W. b. Suppose that dimension of U is n. Show that the dimension of T(U) is less than or equal to n.
3. Let V and W be finite-dimensional vector spaces over field F with dim(V) = n...
3. Let V and W be finite-dimensional vector spaces over field F with dim(V) = n and dim(W) = m, and let φ : V → W be a linear transformation. Fill in the six blanks to give bounds on the sizes of the dimension of ker(φ) and the dimension of im(φ). 3. Let V and W be finite-dimensional vector spaces over field F with dim(V ) = n and dim(W) = m, and let φ : V → W...
9. Let S and T be two subspaces of some vector space V. (b) Define S...
9. Let S and T be two subspaces of some vector space V. (b) Define S + T to be the subset of V whose elements have the form (an element of S) + (an element of T). Prove that S + T is a subspace of V. (c) Suppose {v1, . . . , vi} is a basis for the intersection S ∩ T. Extend this with {s1, . . . , sj} to a basis for S, and...
4. Prove the Following: a. Prove that if V is a vector space with subspace W...
4. Prove the Following: a. Prove that if V is a vector space with subspace W ⊂ V, and if U ⊂ W is a subspace of the vector space W, then U is also a subspace of V b. Given span of a finite collection of vectors {v1, . . . , vn} ⊂ V as follows: Span(v1, . . . , vn) := {a1v1 + · · · + anvn : ai are scalars in the scalar field}...
Let V be an n-dimensional vector space and W a vector space that is isomorphic to...
Let V be an n-dimensional vector space and W a vector space that is isomorphic to V. Prove that W is also n-dimensional. Give a clear, detailed, step-by-step argument using the definitions of "dimension" and "isomorphic" the Definiton of isomorphic:  Let V be an n-dimensional vector space and W a vector space that is isomorphic to V. Prove that W is also n-dimensional. Give a clear, detailed, step-by-step argument using the definitions of "dimension" and "isomorphic" The Definition of dimenion: the...