Question

The population P(t) of mosquito larvae growing in a tree hole increases according to the logistic...

The population P(t) of mosquito larvae growing in a tree hole increases according to the logistic equation with growth constant k = 0.3 days−1 and carrying capacity A = 800. Find a formula for the larvae population P(t), assuming an initial population of P(0) = 80 larvae.
P(t) =______________

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The population P(t) of bacteria grows according to the logistics equation dP/dt=P(12−P/4000), where t is in...
The population P(t) of bacteria grows according to the logistics equation dP/dt=P(12−P/4000), where t is in hours. It is known that P(0)=700. (1) What is the carrying capacity of the model? (2) What is the size of the bacteria population when it is having is fastest growth?
The population of the world was about 5.3 billion in 1990 (t = 0) and about...
The population of the world was about 5.3 billion in 1990 (t = 0) and about 6.1 billion in 2000 (t = 10). Assuming that the carrying capacity for the world population is 50 billion, the logistic differential equation dP =kP(50−P)dt models the population of the world P(t) (measured in billions), where t is the number of years after 1990. Solve this differential equation for P(t) and use this solution to predict what the population will be in 2050 according...
Exponential Model: P(t) = M(1 − e^−kt) where M is maximum population. Logistic Model: P (t)...
Exponential Model: P(t) = M(1 − e^−kt) where M is maximum population. Logistic Model: P (t) = M / 1+Be^−MKt where M is maximum population. Scientists study a fruit fly population in the lab. They estimate that their container can hold a maximum of 500 flies. Seven days after they start their experiment, they count 250 flies. 1. (a) Use the exponential model to find a function P(t) for the number of flies t days after the start of the...
A population of bacteria is growing according to the equation P ( t ) = 1100...
A population of bacteria is growing according to the equation P ( t ) = 1100 e 0.07 t . Estimate when the population will exceed 1594. t=
Suppose that the population develops according to the logistic equation dP/dt = 0.0102P - 0.00003P^2 where...
Suppose that the population develops according to the logistic equation dP/dt = 0.0102P - 0.00003P^2 where t is measured in days. What is the P value after 10 days where A = (M-P(0)) / P(0)) if the P(0) = 40? And P(0) = 20?
Biologists stocked a lake with 300 fish and estimated the carrying capacity (the maximal population for...
Biologists stocked a lake with 300 fish and estimated the carrying capacity (the maximal population for the fish of that species in that lake) to be 7000. The number of fish doubled in the first year. (a) Assuming that the size of the fish population satisfies the logistic equation dP/dt = kP(1−PK), determine the constant k, and then solve the equation to find an expression for the size of the population after t years. k = P(t) = (b) How...
1. A population grows according to an exponential growth model. The initial population is P0=12, and...
1. A population grows according to an exponential growth model. The initial population is P0=12, and the common ratio is r=1.45 Then: P1 = P2 = Find an explicit formula for Pn. Your formula should involve n. Pn =    Use your formula to find P9 P9= Give all answers accurate to at least one decimal place 2. Assume there is a certain population of fish in a pond whose growth is described by the logistic equation. It is estimated that...
Suppose that a population develops according to the following logistic population model. dp/dt=0.04p-0.0001p^2 What is the...
Suppose that a population develops according to the following logistic population model. dp/dt=0.04p-0.0001p^2 What is the carrying capacity? 0.0001 400 10000 0.04 0.0025 What are the equilibrium solutions for the population model ? P = 400 only P = 0 and P = 10000 P = 0 and P = 400 P = 0 only Using the population model , for what values of P  is the population increasing? (0,400) and (0,10000) and
DIFFERENTIAL EQUATIONS PROBLEM Consider a population model that is a generalization of the exponential model for...
DIFFERENTIAL EQUATIONS PROBLEM Consider a population model that is a generalization of the exponential model for population growth (dy/dt = ky). In the new model, the constant growth rate k is replaced by a growth rate r(1 - y/K). Note that the growth rate decreases linearly as the population increases. We then obtain the logistic growth model for population growth given by dy/dt = r(1-y/K)y. Here K is the max sustainable size of the population and is called the carrying...
Exercise 1.3.52: Let P(t) be the population of a certain species of insect at time t,...
Exercise 1.3.52: Let P(t) be the population of a certain species of insect at time t, where t is measured in days. Suppose a population of 30,000 insects grows to 150,000 in 3 days. a) Find the growth constant for this population. b) Write the corresponding initial value problem (DE and IC) and its solution. c) How long will it take for the population to triple?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT