Question

Question(9) Curve ? = t - sin t, y = 1 - cos t, 0 ≤...

Question(9) Curve ? = t - sin t, y = 1 - cos t, 0 ≤ ? ≤ 2? given.
a) Take the derivatives of x and y according to t and arrange them.
b) Write and edit the integral that gives the surface area of the object formed by rotating the given curve around the x axis.
c) Solve the integral and find the surface area.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider the parametric equations below. x = t sin(t),    y = t cos(t),    0 ≤ t ≤ π/3...
Consider the parametric equations below. x = t sin(t),    y = t cos(t),    0 ≤ t ≤ π/3 Set up an integral that represents the area of the surface obtained by rotating the given curve about the x-axis. Use your calculator to find the surface area correct to four decimal places
8?^2 = ?^2 (1 − ?^2) gives on x plane ?please take this function's derivative and...
8?^2 = ?^2 (1 − ?^2) gives on x plane ?please take this function's derivative and orginized ?) Write and edit the integral that sees the surface area of ​​the object formed by turning the given part around the x-axis. ?)solve the integral and find the surface area
The curve given by the parametric equations of x = 1-sint, y = 1-cos t ,...
The curve given by the parametric equations of x = 1-sint, y = 1-cos t , Calculate the volume of the rotational object formed by rotating the x axis use of the parts between t = 0 and t = π / 2. Please solve this question carefully , clear and step by step.I will give you a feedback and thumb up if it is correct.
With the parametric equation x=cos(t)+tsin(t), y=sin(t)-tcos(t) , 0 ≤ t ≤ 2π) Find the length of...
With the parametric equation x=cos(t)+tsin(t), y=sin(t)-tcos(t) , 0 ≤ t ≤ 2π) Find the length of the given curve. (10 point)     2) In the circle of r = 6, the area above the r = 3 cos (θ) line Write the integral or integrals expressing the area of ​​this region by drawing. (10 point)
2. Rotate the semicircle of radius 2 given by y = √(4 − x^2) about the...
2. Rotate the semicircle of radius 2 given by y = √(4 − x^2) about the x-axis to generate a sphere of radius 2, and use this to calculate the surface area of the sphere. 3. Consider the curve given by parametric equations x = 2 sin(t), y = 2 cos(t). a. Find dy/dx b. Find the arclength of the curve for 0 ≤ θ ≤ 2π. 4. a. Sketch one loop of the curve r = sin(2θ) and find...
For the curve x = t - sin t, y = 1 - cos t find...
For the curve x = t - sin t, y = 1 - cos t find d^2y/dx^2, and determine where the curve is concave up and down.
1. Calculate the surface area of ​​the rotary formed due to the rotation of the arc...
1. Calculate the surface area of ​​the rotary formed due to the rotation of the arc x = a (Ꝋ -sin Ꝋ), y = a (1 -cos Ꝋ) with respect to the x axis 2. Determine the volume of a rotating object formed due to the velocity of the area bounded by x = 9 - y2 and x - y - 7 = 0 with respect to the x = axis. Use the shell method.
1. Find the area between the curve f(x)=sin^3(x)cos^2(x) and y=0 from 0 ≤ x ≤ π...
1. Find the area between the curve f(x)=sin^3(x)cos^2(x) and y=0 from 0 ≤ x ≤ π 2. Find the surface area of the function f(x)=x^3/6 + 1/2x from 1≤ x ≤ 2 when rotated about the x-axis.
Show that the curve x = 7 cos(t), y = 6 sin(t) cos(t) has two tangents...
Show that the curve x = 7 cos(t), y = 6 sin(t) cos(t) has two tangents at (0, 0) and find their equations.
Calculate the volume of the rotational object formed by rotating the given curve with the parametric...
Calculate the volume of the rotational object formed by rotating the given curve with the parametric equations x = 1-sint, y = 1-cos t about the x-axis between the part between t = 0 and t = π / 2.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT