Question

Consider the function f(x) = x^2/x-1 with f ' (x) = x^2-2x/ (x - 1)^2 and...

Consider the function f(x) = x^2/x-1 with f ' (x) = x^2-2x/ (x - 1)^2 and f '' (x) = 2 / (x - 1)^3 are given. Use these to answer the following questions.

(a) [5 marks] Find all critical points and determine the intervals where f(x) is increasing and where it is decreasing, use the First Derivative Test to fifind local extreme value if any exists.

(b) Determine the intervals where f(x) is concave upward and where it is concave downward. Use the Second Derivative Test to verify local extreme values from part (a).

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
consider the function f(x) = x/1-x^2 (a) Find the open intervals on which f is increasing...
consider the function f(x) = x/1-x^2 (a) Find the open intervals on which f is increasing or decreasing. Determine any local minimum and maximum values of the function. Hint: f'(x) = x^2+1/(x^2-1)^2. (b) Find the open intervals on which the graph of f is concave upward or concave downward. Determine any inflection points. Hint f''(x) = -(2x(x^2+3))/(x^2-1)^3.
Given: f(x) = x^3 + 3x^2 - 9x + 10. (Note: x^3 means x-cubed, and x^2...
Given: f(x) = x^3 + 3x^2 - 9x + 10. (Note: x^3 means x-cubed, and x^2 means x-squared, respectively.) use simple words, and use mathematical equations and symbols when and if necessary, to explain yourself Discussed the following: the first and second derivative of f(x); intervals where the curve is increasing and decreasing, respectively; the critical points; the relative maximum and minimum points; the point of inflection; where the curve is concave upward or downward.
what does a derivative tell us? F(x)=2x^2-5x-3, [-3,-1] F(x)=x^2+2x-1, [0,1] Give the intervals where the function...
what does a derivative tell us? F(x)=2x^2-5x-3, [-3,-1] F(x)=x^2+2x-1, [0,1] Give the intervals where the function is increasing or decreasing? Identify the local maxima and minima Identify concavity and inflection points
Given the function h(x)=e^-x^2 Find first derivative f ‘ and second derivative f'' Find the critical...
Given the function h(x)=e^-x^2 Find first derivative f ‘ and second derivative f'' Find the critical Numbers and determine the intervals where h(x) is increasing and decreasing. Find the point of inflection (if it exists) and determine the intervals where h(x) concaves up and concaves down. Find the local Max/Min (including the y-coordinate)
f(x)= (x^2+2x-1)/x^2) Find the a.) x-intercept b.) vertical and horizontal asymptote c.) first and second derivative...
f(x)= (x^2+2x-1)/x^2) Find the a.) x-intercept b.) vertical and horizontal asymptote c.) first and second derivative d.) Is it increasing or decreasing? Identify any local extrema e.) Is it concave up and down? Identify any points of reflection.
Analyze and plot the graph of f(x)= x^4/2 - 2x^3/3. for this, find; 1) domain of...
Analyze and plot the graph of f(x)= x^4/2 - 2x^3/3. for this, find; 1) domain of f: 2)Vertical asymptotes: 3) Horizontal asymptotes: 4) Intersection in y: 5) intersection in x: 6) Critical numbers 7) intervals where f is increasing: 8) Intervals where f is decreasing: 9) Relatives extremes Relatives minimums: Relatives maximums: 10) Inflection points: 11) Intervals where f is concave upwards: 12) intervals where f is concave down: 13) plot the graph of f on the plane:
For the questions below, consider the following function. f (x) = 3x^4 - 8x^3 + 6x^2...
For the questions below, consider the following function. f (x) = 3x^4 - 8x^3 + 6x^2 (a) Find the critical point(s) of f. (b) Determine the intervals on which f is increasing or decreasing. (c) Determine the intervals on which f is concave up or concave down. (d) Determine whether each critical point is a local maximum, a local minimum, or neither.
Use the second derivative to find the intervals where f(x) = x4+8x3 is concave upward and...
Use the second derivative to find the intervals where f(x) = x4+8x3 is concave upward and concave downward. Also find any points of inflection.
4. Given the function y = f(x) = 2x^3 + 3x^2 – 12x + 2 a....
4. Given the function y = f(x) = 2x^3 + 3x^2 – 12x + 2 a. Find the intervals where f is increasing/f is decreasing b. Find the intervals where f is concave up/f is concave down c. Find all relative max and relative min (state which is which and why) d. Find all inflection points (also state why)
- Suppose f is a function such that f′(x) = (x+ 1)(x−2)2(x−3), so that f has...
- Suppose f is a function such that f′(x) = (x+ 1)(x−2)2(x−3), so that f has the critical points x=−1,2,3. Determine the open intervals on which f is increasing/decreasing. - Let f be the same function as in Problem 9. Determine which, if any, of the critical points is the location of a local extremum, and indicate whether each extremum is a maximum or minimum. Im confused on how to figure out if a function is increasing and decreasing and...