Question

Find the exact distance between the two skew lines given by r(t) =< 2t + 1,...

Find the exact distance between the two skew lines given by r(t) =< 2t + 1, 3t +1, 4t +1> and r(t) = <2t + 3, -t + 2, t + 3> using the vector formulas involving dot products or cross products.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
(a) Find the distance between the skew lines l1 and l2 given with the vector equations...
(a) Find the distance between the skew lines l1 and l2 given with the vector equations l1 : r1(t) = (1+t)i+ (1+6t)j+ (2t)k; l2 : r2(s) = (1+2s)i+ (5+15s)j+ (−2+6s)k. (b) Determine if the plane given by the Cartesian equation −x + 2z = 0 and the line given by the parametric equations x = 5 + 8t, y = 2 − t, z = 10 + 4t are orthogonal, parallel, or neither.
Find the distance between the given skew lines x=5-t, y=4+5t, z=1-3t and x=t, y=9, z=5t KINDLY...
Find the distance between the given skew lines x=5-t, y=4+5t, z=1-3t and x=t, y=9, z=5t KINDLY INCLUDE THE COMPLETE SOLUTION
Find the distance between the skew lines L1: x = 1 − t , y =...
Find the distance between the skew lines L1: x = 1 − t , y = 2 t , z = 2 + t L2:  x = -2 + s, y = 3 - s, z = -1 + 2s
6. Given vector function r(t) = t2 − 2t, 1 + 3t, 1 3 t 3...
6. Given vector function r(t) = t2 − 2t, 1 + 3t, 1 3 t 3 + 1 2 t 2 i (a) Find r 0 (t) (b) Find the unit tangent vector to the space curve of r(t) at t = 3. (c) Find the vector equation of the tangent line to the curve at t = 3
Show complete and neat solution. Find the distance between the skew lines ?1:? = 1 +...
Show complete and neat solution. Find the distance between the skew lines ?1:? = 1 + 7?,? = 3 + ?,? = 5 − 3? ?2:? = 4 − ?,? = 6? = 7 + 2?.
Given the following pairs of lines, determine whether they are parallel, intersecting or skew, if they...
Given the following pairs of lines, determine whether they are parallel, intersecting or skew, if they intersect, find the intersecting and the plane containing them. 1) L1: (x-1)/1=(y-2)/1=(z-3)/-2 L2:(x-1)/1=(y-3)/0=(z-2)/-1 2) L1: x=t, y=-t,z=-1 L2: x=s, y=s, z=5 2) L1: (3+2x)/0=(-3+2y)/1=(6-3z)/2 L2: x=5/2, y=(3/2)-3t, z=2+4t
Find the shortest distance between line L1: x = 1 + 2t, y = 3 -...
Find the shortest distance between line L1: x = 1 + 2t, y = 3 - 4t, z = 2 + t and L2: the intersection of the planes x + y + z =1 and 2x + y - 3z = 10
At what point do the curves r1 =〈 t , 1 − t , 3 +...
At what point do the curves r1 =〈 t , 1 − t , 3 + t2 〉 and r2 = 〈 3 − s , s − 2 , s2 〉 intersect? Find the angle of intersection. Determine whether the lines L1 : r1 = 〈 5 − 12t , 3 + 9t ,1 − 3t 〉 and L2 : r2 = 〈 3 + 8s , −6s , 7 + 2s 〉are parallel, skew, or intersecting. Explain. If...
find the distance between the point (-1,3,5) and the line given by x=5+t, y=3-2t, and z=1-t
find the distance between the point (-1,3,5) and the line given by x=5+t, y=3-2t, and z=1-t
1. (1 point) For the curve given by r(t)=〈−7t,−4t,1+7t2〉r(t)=〈−7t,−4t,1+7t2〉, Find the derivative r′(t)=〈r′(t)=〈, , , 〉...
1. (1 point) For the curve given by r(t)=〈−7t,−4t,1+7t2〉r(t)=〈−7t,−4t,1+7t2〉, Find the derivative r′(t)=〈r′(t)=〈, , , 〉 Find the second derivative r″(t)=〈r″(t)=〈 Find the curvature at t=1t=1 κ(1)=κ(1)= 2. (1 point) Find the distance from the point (-1, -5, 3) to the plane −4x+4y+0z=−3.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT