Question

If y (x) is the particular solution obtained from y (x) = C1 cos (x) +...

If y (x) is the particular solution obtained from y (x) = C1 cos (x) + C2 sin (x) satisfying y (0) = 5 and y '(0) = 4 determine y (x = 2 π).

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
y1 = 2 cos(x) − 1 is a particular solution for y'' + 4y = 6...
y1 = 2 cos(x) − 1 is a particular solution for y'' + 4y = 6 cos(x) − 4. y2 = sin(x) is a particular solution for y''+4y = 3 sin(x). Using the two particular solutions, find a particular solution for y''+4y = 2 cos(x)+sin(x)− 4/3 . Verify if the particular solution satisfies the given DE. [Hint: Rewrite the right hand of this equation in terms of the given particular solutions to get the particular solution] Verify if the particular...
In this problem, x = c1 cos t + c2 sin t is a two-parameter family...
In this problem, x = c1 cos t + c2 sin t is a two-parameter family of solutions of the second-order DE x'' + x = 0. Find a solution of the second-order IVP consisting of this differential equation and the given initial conditions. x(π/6) = 1 2 , x'(π/6) = 0 x=
y = c1 cos(5x) + c2 sin(5x) is a two-parameter family of solutions of the second-order...
y = c1 cos(5x) + c2 sin(5x) is a two-parameter family of solutions of the second-order DE y'' + 25y = 0. If possible, find a solution of the differential equation that satisfies the given side conditions. The conditions specified at two different points are called boundary conditions. (If not possible, enter IMPOSSIBLE.) y(0) = 1, y'(π) = 7 y =
Find the solution to the separable differential equation dy = x cos2 y + sin x...
Find the solution to the separable differential equation dy = x cos2 y + sin x cos2 y satisfying π dx the initial condition y = 4 when x = π.
Identify the surface with parametrization x = 3 cos θ sin φ, y = 3 sin...
Identify the surface with parametrization x = 3 cos θ sin φ, y = 3 sin θ sin φ, z = cos φ where 0 ≤ θ ≤ 2π and 0 ≤ φ ≤ π. Hint: Find an equation of the form F(x, y, z) = 0 for this surface by eliminating θ and φ from the equations above. (b) Calculate a parametrization for the tangent plane to the surface at (θ, φ) = (π/3, π/4).
Compute the line integral 2xy dx + x^2 dy along the following curves. (a) C1 along...
Compute the line integral 2xy dx + x^2 dy along the following curves. (a) C1 along the circle x 2 + y 2 = 1 from the point (1, 0) to (0, 1) using x = cost, y = sin t. (b) C2 along the line x + y = 1 from (0, 1) to (1, 0). (c) C = C1 + C2 for the curves C1 and C2 in parts (a) and (b).
1.) Let f ( x , y , z ) = x ^3 + y +...
1.) Let f ( x , y , z ) = x ^3 + y + z + sin ⁡ ( x + z ) + e^( x − y). Determine the line integral of f ( x , y , z ) with respect to arc length over the line segment from (1, 0, 1) to (2, -1, 0) 2.) Letf ( x , y , z ) = x ^3 * y ^2 + y ^3 * z^...
Evaluate the following. f(x, y) = x + y S: r(u, v) = 5 cos(u) i...
Evaluate the following. f(x, y) = x + y S: r(u, v) = 5 cos(u) i + 5 sin(u) j + v k, 0 ≤ u ≤ π/2, 0 ≤ v ≤ 3
Consider the linear system x' = x cos a − y sin a y'= x sin...
Consider the linear system x' = x cos a − y sin a y'= x sin a + y cos a where a is a parameter. Show that as a ranges over [0, π], the equilibrium point at the origin passes through the sequence stable node, stable spiral, center, unstable spiral, unstable node.
Let y be the solution of the equation a) y ′ = 2 x y, satisfying...
Let y be the solution of the equation a) y ′ = 2 x y, satisfying the condition y ( 0 ) = 1. Find the value of the function f ( x ) = ln ⁡ ( y ( x ) ) at the point x = 2. b) Let y be the solution of the equation y ′ = sqrt(1 − y^2) satisfying the condition  y ( 0 ) = 0. Find the value of the function  f ( x...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT