Question

Determine the third and fourth Taylor polynomials of x3 + 3x - 1 at x =...

Determine the third and fourth Taylor polynomials of x3 + 3x - 1 at x = -1.
p3(x) =  
p4(x) =

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Determine the third Taylor polynomial of the given function at x = 0. f(x)=1/x+3
Determine the third Taylor polynomial of the given function at x = 0. f(x)=1/x+3
Consider the following. f(x)=ln(1-x) a) Determine the fourth Taylor polynomial of f(x) at x = 0....
Consider the following. f(x)=ln(1-x) a) Determine the fourth Taylor polynomial of f(x) at x = 0. b) Use the above to estimate ln(0.6). (Give your answer correct the four decimal places.)
Q7) Factorise the polynomial f(x) = x3 − 2x2 + 2x − 1 into irreducible polynomials...
Q7) Factorise the polynomial f(x) = x3 − 2x2 + 2x − 1 into irreducible polynomials in Z5[x], i.e. represent f(x) as a product of irreducible polynomials in Z5[x]. Demonstrate that the polynomials you obtained are irreducible. I think i manged to factorise this polynomial. I found a factor to be 1 so i divided the polynomial by (x-1) as its a linear factor. So i get the form (x3 − 2x2 + 2x − 1) = (x2-x+1)*(x-1) which is...
**NUMBER THEORY** Proof that the following polynomials do not have integer roots. a) x3 − x...
**NUMBER THEORY** Proof that the following polynomials do not have integer roots. a) x3 − x + 1 b) x3 + x2 − x + 1
Determine if the given polynomials given below span P2 p(x) = 1 − x2 , q(x)...
Determine if the given polynomials given below span P2 p(x) = 1 − x2 , q(x) = 1 + x, r(x) = 4x2+ 3x − 1, s(x) = 3x2+ 4x + 1
1) Determine whether x3 is O(g(x)) for the following: a. g(x) = x2 + x3 b....
1) Determine whether x3 is O(g(x)) for the following: a. g(x) = x2 + x3 b. g(x) = x2 + x4 c. g(x) = x3 / 2 2) Show that each of these pairs of functions are of the same order: a. 3x + 7, x b. 2x2 + x - 7, x2
If V is a vector space of polynomials of degree n with real numbers as coefficients,...
If V is a vector space of polynomials of degree n with real numbers as coefficients, over R, and W is generated by the polynomials (x 3 + 2x 2 − 2x + 1, x3 + 3x 2 − x + 4, 2x 3 + x 2 − 7x − 7), then is W a subspace of V , and if so, determine its basis.
1. This question is on the Taylor polynomial. (a) Find the Taylor Polynomial p3(x) for f(x)=...
1. This question is on the Taylor polynomial. (a) Find the Taylor Polynomial p3(x) for f(x)= e^ x sin(x) about the point a = 0. (b) Bound the error |f(x) − p3(x)| using the Taylor Remainder R3(x) on [−π/4, π/4]. (c) Let pn(x) be the Taylor Polynomial of degree n of f(x) = cos(x) about a = 0. How large should n be so that |f(x) − pn(x)| < 10^−5 for −π/4 ≤ x ≤ π/4 ?
g(x)=[x3(3x-1)^2(2x+1)]^1/2 find the derivative
g(x)=[x3(3x-1)^2(2x+1)]^1/2 find the derivative
Find the least upper bound and the greatest lower bound for the two polynomials: a) p(x)...
Find the least upper bound and the greatest lower bound for the two polynomials: a) p(x) = x4 - 3x2 - 2x + 5 b) p(x) = -2x5 + 5x4 + x3 - 3x + 4
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT