Question

1.    Let Y` = x3    - 2 x2 - 8x ( note : y prime...

1.    Let Y` = x3    - 2 x2 - 8x ( note : y prime )

Find the critical points _____________

Find Y`` ________________

a) Critical pt 1 x= ________

What is the concavity at critical point 1 ( positive or negative ) _______

Do we have a (local) max or min at crit. point 1 ? ___________

b)   Critical pt 2 x= ________

What is the concavity at critical point 2 ( positive or negative ) _______

Do we have a (local) max or min at crit. point 2 ? ___________

c)    Critical pt 3 x= ________

What is the concavity at critical point 3 ( positive or negative ) _______

Do we have a (local) max or min at crit. point 3 ? ___________

d) Using all of the information above, sketch the original Y function. Please label the critical points

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider the function f(x,y) = -8x^2-8y^2+x+y Select all that apply: 1. The function has two critical...
Consider the function f(x,y) = -8x^2-8y^2+x+y Select all that apply: 1. The function has two critical points 2. The function has a saddle point 3. The function has a local maximum 4. The function has a local minimum 5. The function has one critical point *Please show your work so I can follow along*
consider the function f(x)=3x-5/sqrt x^2+1. given f'(x)=5x+3/(x^2+1)^3/2 and f''(x)=-10x^2-9x+5/(x^2+1)^5/2 a) find the local maximum and minimum...
consider the function f(x)=3x-5/sqrt x^2+1. given f'(x)=5x+3/(x^2+1)^3/2 and f''(x)=-10x^2-9x+5/(x^2+1)^5/2 a) find the local maximum and minimum values. Justify your answer using the first or second derivative test . round your answers to the nearest tenth as needed. b)find the intervals of concavity and any inflection points of f. Round to the nearest tenth as needed. c)graph f(x) and label each important part (domain, x- and y- intercepts, VA/HA, CN, Increasing/decreasing, local min/max values, intervals of concavity/ inflection points of f?
find the graph g(x) x^4+2x^3+1; (1)fint the intervals on which g(x) is increasing or decreasing (2)find...
find the graph g(x) x^4+2x^3+1; (1)fint the intervals on which g(x) is increasing or decreasing (2)find local max and min (3)find the intervals of concavity and the inflection points.
1)         Prove (with an ε- δ proof) limx→22x3-x2-3x=6 2)         fx= x5-5x3       a)   Find the first derivative....
1)         Prove (with an ε- δ proof) limx→22x3-x2-3x=6 2)         fx= x5-5x3       a)   Find the first derivative. b)   Find all critical numbers. c)   Make a single line graph showing where the function is increasing and where it is decreasing. d) Find the coordinates of all stationary points, maxima, and minima. e)   Find the second derivative. Find any numbers where the concavity of the function may change. f) Make a single line graph showing the concavity of the function. Find the coordinates...
a) The function f(x)=ax^2+8x+b, where a and b are constants, has a local maximum at the...
a) The function f(x)=ax^2+8x+b, where a and b are constants, has a local maximum at the point (2,15). Find the values of a and b. b) if b is a positive constand and x> 0, find the critical points of the function g(x)= x-b ln x, and determine if this critical point is a local maximum using the second derivative test.
Consider differential equation: x3 (x2-1)2 (x2+1) y'' + (x-1) x y' + y = 0 .....
Consider differential equation: x3 (x2-1)2 (x2+1) y'' + (x-1) x y' + y = 0 .. Determine whether x=0 is a regular singular point. Determine whether x=1 is a regular singular point. Are there any regular singular points that are complex numbers? Justify conclusions.
If f(x,y)=(5∗x3+4∗y3+4∗x∗y+1) find the critical point for f(x,y) x=____ y=____ Is this critical point a local...
If f(x,y)=(5∗x3+4∗y3+4∗x∗y+1) find the critical point for f(x,y) x=____ y=____ Is this critical point a local maximum, local minimum, or saddle point?
Given f(x) = , f′(x) = and f′′(x) = , find all possible x2 x3 x4...
Given f(x) = , f′(x) = and f′′(x) = , find all possible x2 x3 x4 intercepts, asymptotes, relative extrema (both x and y values), intervals of increase or decrease, concavity and inflection points (both x and y values). Use these to sketch the graph of f(x) = 20(x − 2) . x2
f(x,y)= (3x^2)+(4y^3)-24xy+29 does this have a local max or min or both? does it have a...
f(x,y)= (3x^2)+(4y^3)-24xy+29 does this have a local max or min or both? does it have a critical point?
Let f(x)=(x^2)/(x-2) Find the following a) Domain of f b) Intercepts (approximate to the nearest thousandth)...
Let f(x)=(x^2)/(x-2) Find the following a) Domain of f b) Intercepts (approximate to the nearest thousandth) c) Symmetry (Show testing for symmetry) d) asymptotes e) Intervals of increase/decrease (approximate the critical numbers to the nearest thousandth. Be sure to show the values tested) f) Local maxima and local minima g) Intervals of concavity and points of inflection (be sure to show all testing) h) summary for f(x)=(x^2)/(x-2) Domain X intercepts: Y intercept: symmetry: asymptote: increasing: decreasing: local max: local min:...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT