Question

Let A be the matrix below and define a transformation T:ℝ3→ℝ3 by T(U) = AU. For...

Let A be the matrix below and define a transformation T:ℝ3→ℝ3 by T(U) = AU. For the vector B below, find a vector U such that T maps U to B, if possible. Otherwise state that there is no such U.

A =

2

6

6

−1

−3

−2

−1

−3

−1

B =

−22

6

1

< Select an answer >

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let the linear transformation T: V--->W be such that T (u) = u2 If a, b...
Let the linear transformation T: V--->W be such that T (u) = u2 If a, b are Real. Find T (au + bv) , if u = (x, y) v = (z, w) and uv = (xz-yw, xw + yz) Let the linear transformation T: V---> W be such that T (u) = T (x, y) = (xy, 0) where u = (x, y), with 2, -3. Then, if u = ( 1.0) and v = (0.1). Find the value...
a. Let →u = (x, y, z) ∈ R^3 and define T : R^3 → R^3...
a. Let →u = (x, y, z) ∈ R^3 and define T : R^3 → R^3 as T( →u ) = T(x, y, z) = (x + y, 2z − y, x − z) Find the standard matrix for T and decide whether the map T is invertible. If yes then find the inverse transformation, if no, then explain why. b. Let (x, y, z) ∈ R^3 be given T : R^3 → R^2 by T(x, y, z) = (x...
Let V be a three-dimensional vector space with ordered basis B = {u, v, w}. Suppose...
Let V be a three-dimensional vector space with ordered basis B = {u, v, w}. Suppose that T is a linear transformation from V to itself and T(u) = u + v, T(v) = u, T(w) = v. 1. Find the matrix of T relative to the ordered basis B. 2. A typical element of V looks like au + bv + cw, where a, b and c are scalars. Find T(au + bv + cw). Now that you know...
Let T be the linear transformation from R2 to R2, that rotates a vector clockwise by...
Let T be the linear transformation from R2 to R2, that rotates a vector clockwise by 60◦ about the origin, then reflects it about the line y = x, and then reflects it about the x-axis. a) Find the standard matrix of the linear transformation T. b) Determine if the transformation T is invertible. Give detailed explanation. If T is invertible, find the standard matrix of the inverse transformation T−1. Please show all steps clearly so I can follow your...
Let T be an linear transformation from ℝr to ℝs. Let A be the matrix associated...
Let T be an linear transformation from ℝr to ℝs. Let A be the matrix associated to T. Fill in the correct answer for each of the following situations (enter your answers as A, B, or C).   1. Every row in the row-echelon form of A has a leading entry.   2. Two rows in the row-echelon form of A do not have leading entries.   3. The row-echelon form of A has a leading entry in every column.   4. The row-echelon...
(a) Let T be any linear transformation from R2 to R2 and v be any vector...
(a) Let T be any linear transformation from R2 to R2 and v be any vector in R2 such that T(2v) = T(3v) = 0. Determine whether the following is true or false, and explain why: (i) v = 0, (ii) T(v) = 0. (b) Find the matrix associated to the geometric transformation on R2 that first reflects over the y-axis and then contracts in the y-direction by a factor of 1/3 and expands in the x direction by a...
Let T be a 1-1 linear transformation from a vector space V to a vector space...
Let T be a 1-1 linear transformation from a vector space V to a vector space W. If the vectors u, v and w are linearly independent in V, prove that T(u), T(v), T(w) are linearly independent in W
Assume that T is a linear Transformation. a) Find the Standard matrix of T is T:...
Assume that T is a linear Transformation. a) Find the Standard matrix of T is T: R2 -> R3 first rotate point through (pie)/2 radian (counterclock-wise) and then reflects points through the horizontal x-axis b) Use part a to find the image of point (1,1) under the transformation T Please explain as much as possible. This was a past test question that I got no points on. I'm study for the final and am trying to understand past test questions.
1. Let T be a linear transformation from vector spaces V to W. a. Suppose that...
1. Let T be a linear transformation from vector spaces V to W. a. Suppose that U is a subspace of V, and let T(U) be the set of all vectors w in W such that T(v) = w for some v in V. Show that T(U) is a subspace of W. b. Suppose that dimension of U is n. Show that the dimension of T(U) is less than or equal to n.
Let u = (1,−3,3,9) and v = (2,1,0,−2). Find scalars a and b so that au...
Let u = (1,−3,3,9) and v = (2,1,0,−2). Find scalars a and b so that au + bv = (−3,−5,3,10)