Question

S = {(2,5,3)} and T = {(2,0,5)} are two clusters. Two clusters that S and T...

S = {(2,5,3)} and T = {(2,0,5)} are two clusters. Two clusters that S and T spans are L(S) and L(T) . Is the intersection of L (S) and L (T) a vector space? If yes, find this vector space. If no, explain why there is no vector space.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
9. Let S and T be two subspaces of some vector space V. (b) Define S...
9. Let S and T be two subspaces of some vector space V. (b) Define S + T to be the subset of V whose elements have the form (an element of S) + (an element of T). Prove that S + T is a subspace of V. (c) Suppose {v1, . . . , vi} is a basis for the intersection S ∩ T. Extend this with {s1, . . . , sj} to a basis for S, and...
Let the set W be: all polynomials in P3 satisfying that p(-t)=p(t), Question: Is W a...
Let the set W be: all polynomials in P3 satisfying that p(-t)=p(t), Question: Is W a vector space or not? If yes, find a basis and dimension
1. A function + : S × S → S for a set S is said...
1. A function + : S × S → S for a set S is said to provide an associative binary operation on S if r + (s + t) = (r + s) +t for all r, s, t ∈ S. Show that any associative binary operation + on a set S can have at most one “unit” element, i.e. an element u ∈ S such that (*) s + u = s = u + s for all...
At what point do the curves r1 =〈 t , 1 − t , 3 +...
At what point do the curves r1 =〈 t , 1 − t , 3 + t2 〉 and r2 = 〈 3 − s , s − 2 , s2 〉 intersect? Find the angle of intersection. Determine whether the lines L1 : r1 = 〈 5 − 12t , 3 + 9t ,1 − 3t 〉 and L2 : r2 = 〈 3 + 8s , −6s , 7 + 2s 〉are parallel, skew, or intersecting. Explain. If...
For a nonempty subset S of a vector space V , define span(S) as the set...
For a nonempty subset S of a vector space V , define span(S) as the set of all linear combinations of vectors in S. (a) Prove that span(S) is a subspace of V . (b) Prove that span(S) is the intersection of all subspaces that contain S, and con- clude that span(S) is the smallest subspace containing S. Hint: let W be the intersection of all subspaces containing S and show W = span(S). (c) What is the smallest subspace...
Let V be a finite-dimensional vector space and let T be a linear map in L(V,...
Let V be a finite-dimensional vector space and let T be a linear map in L(V, V ). Suppose that dim(range(T 2 )) = dim(range(T)). Prove that the range and null space of T have only the zero vector in common
3. Closure Properties (a) Using that vector spaces are closed under scalar multiplication, explain why if...
3. Closure Properties (a) Using that vector spaces are closed under scalar multiplication, explain why if any nonzero vector from R2 or R3 is in a vector space V, then an entire line’s worth of vectors are in V. (b) Why isn’t closure under vector addition enough to make the same statement? 4. Subspaces and Spans: The span of a set of vectors from Rn is always a subspace of Rn. This is relevant to the problems below because the...
6. Given vector function r(t) = t2 − 2t, 1 + 3t, 1 3 t 3...
6. Given vector function r(t) = t2 − 2t, 1 + 3t, 1 3 t 3 + 1 2 t 2 i (a) Find r 0 (t) (b) Find the unit tangent vector to the space curve of r(t) at t = 3. (c) Find the vector equation of the tangent line to the curve at t = 3
3. Consider the following two lines: x = c + t, y = 1 + t,...
3. Consider the following two lines: x = c + t, y = 1 + t, z = 5 + t and x = t, y = 1 - t, z = 3 + t. Is there a value c that makes the two lines intersect? If so, find it. Otherwise, give a reason. 4. A particle starts at the origin and moves along the shortest path to the line determined by the two points P =(1,2,3) and Q =(3,-2,-1)....
Let z(s,t) z(s,t) be a differentiable function of two variable s and t with continuous first...
Let z(s,t) z(s,t) be a differentiable function of two variable s and t with continuous first partial derivatives. Assume further that s=s(x,y), t=t(x,y) are differentiable functions of variables x and y . (a) find the general chain rule chain rule for (∂z/∂x)y . Your subscripts will be marked. (b) Let equations F(x,y,s,t)=y+x^2+cos(t)−sin(s)+1=0, G(x,y,s,t)=x+y^2−st−2=0, implicitly define s , and t as functions of x and y . Compute ∂s/∂x)y ∂t/∂x)y at the point P(x,y,s,t)=(1,−1,π,0). (c) Let now z(s,t)=s^2+t. By using the...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT