Question

Suppose that the set An has all the even permutations in n-permutations. Prove that this set...

Suppose that the set An has all the even permutations in n-permutations. Prove that this set is the same as [a set consisting of cyclic permutations of length 3 and their products].

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let n ≥ 2. Show that exactly half of the permutations in Sn are even ,...
Let n ≥ 2. Show that exactly half of the permutations in Sn are even , by finding a bijection from the set of all even permutations in Sn to the set of all odd permutations in Sn.
Let S_n be the collection of permutations on {1,2,...,n}. Consider the cycle s=(1,2,...,n) and consider the...
Let S_n be the collection of permutations on {1,2,...,n}. Consider the cycle s=(1,2,...,n) and consider the cyclic group generate by s, denoted <s>. Prove that the set all t in S_n such that ts=st, is just the set <s>
Suppose n ≥ 3 is an integer. Prove that in Sn every even permutation is a...
Suppose n ≥ 3 is an integer. Prove that in Sn every even permutation is a product of cycles of length 3. Hint: (a, b)(b, c) = (a, b, c) and (a, b)(c, d) = (a, b, c)(b, c, d).
Please use two methods to prove that the set of odd permutations of Sn is not...
Please use two methods to prove that the set of odd permutations of Sn is not a subgroup of Sn.
Prove that |U(n)| is even for all integers n ≥ 3. (use Lagrange’s Theorem)
Prove that |U(n)| is even for all integers n ≥ 3. (use Lagrange’s Theorem)
Using induction prove that for all positive integers n, n^2−n is even.
Using induction prove that for all positive integers n, n^2−n is even.
Prove by either contradiction or contraposition: For all integers m and n, if m+n is even...
Prove by either contradiction or contraposition: For all integers m and n, if m+n is even then m and n are either both even or both odd.
prove that if G is a cyclic group of order n, then for all a in...
prove that if G is a cyclic group of order n, then for all a in G, a^n=e.
Discrete Math 6. Prove that for all positive integer n, there exists an even positive integer...
Discrete Math 6. Prove that for all positive integer n, there exists an even positive integer k such that n < k + 3 ≤ n + 2 . (You can use that facts without proof that even plus even is even or/and even plus odd is odd.)
If kr<=n, where 1<r<=n. Prove that the number of permutations α ϵ Sn, where α is...
If kr<=n, where 1<r<=n. Prove that the number of permutations α ϵ Sn, where α is a product of k disjoint r-cycles is (1/k!)(1/r^k)[n(n-1)(n-2)...(n-kr+1)]
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT