Question

e-ydx + (y-xey)dy=0 After finding an integral multiplier that makes the equation exactly differential, Obtain the...


e-ydx + (y-xey)dy=0

After finding an integral multiplier that makes the equation exactly differential,
Obtain the general solution.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider the differential equation y′′+ 9y′= 0.( a) Let u=y′=dy/dt. Rewrite the differential equation as a...
Consider the differential equation y′′+ 9y′= 0.( a) Let u=y′=dy/dt. Rewrite the differential equation as a first-order differential equation in terms of the variables u. Solve the first-order differential equation for u (using either separation of variables or an integrating factor) and integrate u to find y. (b) Write out the auxiliary equation for the differential equation and use the methods of Section 4.2/4.3 to find the general solution. (c) Find the solution to the initial value problem y′′+ 9y′=...
find the solution of the first order differential equation (e^x+y + ye^y)dx +(xe^y - 1)dy =0...
find the solution of the first order differential equation (e^x+y + ye^y)dx +(xe^y - 1)dy =0 with initial value y(0)= -1
Differential Equations problem If y1= e^-x is a solution of the differential equation y'''-y''+2y=0 . What...
Differential Equations problem If y1= e^-x is a solution of the differential equation y'''-y''+2y=0 . What is the general solution of the differential equation?
Consider the differential equation x2 dy + y ( x + y) dx = 0 with...
Consider the differential equation x2 dy + y ( x + y) dx = 0 with the initial condition y(1) = 1. (2a) Determine the type of the differential equation. Explain why? (2b) Find the particular solution of the initial value problem.
Find the general solution to the differential equation dy/dx=sinxcos2xtany. (Hint: If you have forgotten the integral...
Find the general solution to the differential equation dy/dx=sinxcos2xtany. (Hint: If you have forgotten the integral of cotangent, use u substitution
If y1= e^-3x is a solution of the differential equation y "'+ y" - 4y' +...
If y1= e^-3x is a solution of the differential equation y "'+ y" - 4y' + 6y = 0. What is the general solution of the differential equation?
1) Solve the given differential equation by separation of variables. exy dy/dx = e−y + e−6x...
1) Solve the given differential equation by separation of variables. exy dy/dx = e−y + e−6x − y 2) Solve the given differential equation by separation of variables. y ln(x) dx/dy = (y+1/x)^2 3) Find an explicit solution of the given initial-value problem. dx/dt = 7(x2 + 1),  x( π/4)= 1
(x-y)dx + (y+x)dy =0 Solve the differential equation
(x-y)dx + (y+x)dy =0 Solve the differential equation
Find the general solution to the given differential equation. 1+(1+ty)e^ty+(1+t^2e^ty) dy/dt=0
Find the general solution to the given differential equation. 1+(1+ty)e^ty+(1+t^2e^ty) dy/dt=0
The differential equation given as dy / dx = y(x^3) - 1.4y, y (0) = 1...
The differential equation given as dy / dx = y(x^3) - 1.4y, y (0) = 1 is calculated by taking the current h = 0.2 at the point x = 0.6 and calculated by the Runge-Kutta method from the 4th degree, find the relative error. analytical solution: y(x)=e^(0.25(x^4)-1.4x)