Question

Find the mass of a thin funnel in the shape of a cone z = sqrt...

Find the mass of a thin funnel in the shape of a cone

z =

sqrt x2 + y2

, 1 ≤ z ≤ 4

if its density function is

ρ(x, y, z) = 7 − z.

Homework Answers

Answer #1

comment if you need further clarification on this answer!

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Find the mass of a thin funnel in the shape of a cone z = x2...
Find the mass of a thin funnel in the shape of a cone z = x2 + y2 , 1 ≤ z ≤ 3 if its density function is ρ(x, y, z) = 6 − z.
Find the integral that represents: The volume of the solid under the cone z = sqrt(x^2...
Find the integral that represents: The volume of the solid under the cone z = sqrt(x^2 + y^2) and over the ring 4 ≤ x^2 + y^2 ≤ 25 The volume of the solid under the plane 6x + 4y + z = 12 and on the disk with boundary x2 + y2 = y. The area of ​​the smallest region, enclosed by the spiral rθ = 1, the circles r = 1 and r = 3 & the polar...
Find the mass and center of mass of the lamina that occupies the region D and...
Find the mass and center of mass of the lamina that occupies the region D and has the given density function ρ. D is bounded by the parabolas y = x2 and x = y2;    ρ(x, y) = 19 sqt(x)
Calculate the mass of the solid E in the first octant inside the cone z =...
Calculate the mass of the solid E in the first octant inside the cone z = (1/s) sqrt(x^2 + y^2) in the sphere of radius 10 whose density is given by δ (x, y , z) = 36(x^2) + 36(y^2) + 36(z^2). please help
Find the mass of the triangular region with vertices (0, 0), (1, 0), and (0, 5),...
Find the mass of the triangular region with vertices (0, 0), (1, 0), and (0, 5), with density function ρ(x,y)=x2+y2
find the volume between the cone z=sqrt(x^2+y^2) and the sphere x^2+y^2+z^2=2az, if a=1
find the volume between the cone z=sqrt(x^2+y^2) and the sphere x^2+y^2+z^2=2az, if a=1
The average value of a function f(x, y, z) over a solid region E is defined...
The average value of a function f(x, y, z) over a solid region E is defined to be fave = 1 V(E) E f(x, y, z) dV where V(E) is the volume of E. For instance, if ρ is a density function, then ρave is the average density of E. Find the average value of the function f(x, y, z) = 5x2z + 5y2z over the region enclosed by the paraboloid z = 4 − x2 − y2 and the...
Find the linear approximation of the function f(x, y, z) = sqrt x2 + y2 +...
Find the linear approximation of the function f(x, y, z) = sqrt x2 + y2 + z2 at (3, 6, 6) and use it to approximate the number sqrt3.01^2 + 5.97^2 + 5.98^2 . (Round your answer to five decimal places.) f(3.01, 5.97, 5.98)
Use cylindrical coordinates. Find the volume of the solid that is enclosed by the cone z...
Use cylindrical coordinates. Find the volume of the solid that is enclosed by the cone z = x2 + y2 and the sphere x2 + y2 + z2 = 128.
A lamina occupies the first quadrant of the unit disk (x2+y2≤1x2+y2≤1, x,y≥1x,y≥1). It's density function is...
A lamina occupies the first quadrant of the unit disk (x2+y2≤1x2+y2≤1, x,y≥1x,y≥1). It's density function is ρ(x,y)=xρ(x,y)=x. Find the center of mass of the lamina.