Question

Assume that the radius rr of a sphere is expanding at a rate of 14 in/...

Assume that the radius rr of a sphere is expanding at a rate of 14 in/ min14 in/ min The volume of a sphere is V=43πr3V=43πr3.

Determine the rate at which the volume is changing with respect to time when r=11 in.

Assume that the volume VV of a sphere is expanding at a rate of 460 in3/ min460 in3/ min The volume of a sphere is V=43πr3V=43πr3.

Determine the rate at which the radius is changing with respect to time when r=4 in.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Assume that the radius r of a sphere is expanding at a rate of 40 cm/min....
Assume that the radius r of a sphere is expanding at a rate of 40 cm/min. The volume of a sphere is V = (4/ 3) π r ^3 and its surface area is 4 π r ^2 . Determine the rate at which the volume is changing with respect to time at t = 2 min, assuming that r = 0 at t = 0 .
A sphere of radius R is completely submerged in a container of water. The sphere displaces...
A sphere of radius R is completely submerged in a container of water. The sphere displaces 1m^3 of water. What is the buoyant force? Assume the density of water ρw = 1000kg/m3 . Hint: The volume of a sphere is given by V = 4/3πR3 Then, find the density of the sphere given that its weight in air is 15, 000 kg · m/s2 and the radius R = 1m
A sphere with a volume V and a radius of r is compressed (flattened) into the...
A sphere with a volume V and a radius of r is compressed (flattened) into the shape of a cylinder with a radius of r and a height of r/4. The volume remains constant. Show that the surface-to-volume ratio of the sphere is less than that of the flattened cylinder.
Assume the earth is a uniform sphere of mass M and radius R. As strange as...
Assume the earth is a uniform sphere of mass M and radius R. As strange as it may sound, if one can dig a long tunnel from one side of the Earth straight through the center and exit the other end, any object falling into the tunnel will appear at the other end (i.e. the opposite side of the Earth) in just 2530 s (42.2 min). Call that time t. Let t be a function of G, M, and R,...
Immediately outside a conducting sphere of unknown charge Q and radius R the electric potential is...
Immediately outside a conducting sphere of unknown charge Q and radius R the electric potential is 190 V, and 10.0 cm further from the sphere, the potential is 130 V. (a) Determine the radius R of the sphere (in cm). cm (b) Determine the charge Q on the sphere (in nC). nC (c) The electric potential immediately outside another charged conducting sphere is 220 V, and 10.0 cm farther from the center the magnitude of the electric field is 410...
Water Level A small solid sphere of mass M0, of radius R0, and of uniform density...
Water Level A small solid sphere of mass M0, of radius R0, and of uniform density ?0 is placed in a large bowl containing water. It floats and the level of the water in the dish is L. Given the information below, determine the possible effects on the water level L, (R-Rises, F-Falls, U-Unchanged), when that sphere is replaced by a new solid sphere of uniform density. 1.The new sphere has mass M = M0 and radius R < R0...
Let V be the volume of a cylinder having height h and radius r, and assume...
Let V be the volume of a cylinder having height h and radius r, and assume that h and r vary with time. (a) How are dV /dt, dh/dt, and dr/dt related? (b) At a certain instant, the height is 18 cm and increasing at 3 cm/s, while the radius is 30 cm and decreasing at 3 cm/s. How fast is the volume changing at that instant? Is the volume increasing or decreasing at that instant?
When gas expands in a cylinder with radius r, the pressure P at any given time...
When gas expands in a cylinder with radius r, the pressure P at any given time is a function of the volume V: P = P(V). The force exerted by the gas on the piston (see the figure) is the product of the pressure and the area: F = πr2P. The work done by the gas when the volume expands from volume V1 to volume V2 is W = V2 P dV V1 . In a steam engine the pressure...
A small solid sphere of mass M0, of radius R0, and of uniform density ?0 is...
A small solid sphere of mass M0, of radius R0, and of uniform density ?0 is placed in a large bowl containing water. It floats and the level of the water in the dish is L. Given the information below, determine the possible effects on the water level L, (Answer with R-Rises, F-Falls, U-Unchanged, Can also answer with R or U, F or U, F or R or U), when that sphere is replaced by a new solid sphere of...
A solid, homogeneous sphere with a mass of m0, a radius of r0 and a density...
A solid, homogeneous sphere with a mass of m0, a radius of r0 and a density of ?0 is placed in a container of water. Initially the sphere floats and the water level is marked on the side of the container. What happens to the water level, when the original sphere is replaced with a new sphere which has different physical parameters? Notation: r means the water level rises in the container, f means falls, s means stays the same....