Question

Describe the shape of the parametrically defined curve (eg, upper half of circle with radius =...

Describe the shape of the parametrically defined curve (eg, upper half of circle with radius = 3, centered at (1, -2) ) and sketch. x(t) = 5cos(t) + 5; y(t) = 5sin(t) – 2, -pi <= t <= pi.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Evaluate ∫c(1−xy/2)dS where C is the upper half of the circle centered at the origin with...
Evaluate ∫c(1−xy/2)dS where C is the upper half of the circle centered at the origin with radius 1 with the clockwise rotation followed by the line segment from (1,0)to (3,0) which in turn is followed by the lower half of the circle centerd at the origin of radius 3 with clockwise rotation.
Demonstrate that the curve r=2cos(θ) is a circle centered at (1,0) or radius 1. You will...
Demonstrate that the curve r=2cos(θ) is a circle centered at (1,0) or radius 1. You will NOT receive any partial credit for a correct sketch.
The curve C1 is the circle in R 2 of radius 2 centered at the origin,...
The curve C1 is the circle in R 2 of radius 2 centered at the origin, directed counterclockwise; the curve C2 is the hexagon in R 2 with vertices (4, −4), (4, 4), (0, 6), (−4, 4), (−4, −4), (0, −6), directed counterclockwise; and F(x, y) = (y/(x^2 + y^2))i − (x/(x^2+y^2))j. (a) Evaluate R C1 F · dr. (b) Evaluate R C2 F · dr.
a) Find the parametric equations for the circle centered at (1,0) of radius 2 generated clockwise...
a) Find the parametric equations for the circle centered at (1,0) of radius 2 generated clockwise starting from (1+21/2 , 21/2). <---( one plus square root 2, square root 2) b) When given x(t) = tcost, y(t) = sint, 0 <_ t. Find dy/dx as a function of t. c) When given the parametric equations x(t) = eatsin2*(pi)*t, y(t) = eatcos2*(pi)*t where a is a real number. Find the arc length as a function of a for 0 <_ t...
A space curve C is parametrically parametrically defined by x(t)=e^t^(2) −10, y(t)=2t^(3/2) +10, z(t)=−π, t∈[0,+∞). (a)...
A space curve C is parametrically parametrically defined by x(t)=e^t^(2) −10, y(t)=2t^(3/2) +10, z(t)=−π, t∈[0,+∞). (a) What is the vector representation r⃗(t) for C ? (b) Is C a smooth curve? Justify your answer. (c) Find a unit tangent vector to C . (d) Let the vector-valued function v⃗ be defined by v⃗(t)=dr⃗(t)/dt Evaluate the following indefinite integral ∫(v⃗(t)×i^)dt. (cross product)
If a circle C with radius 1 rolls along the outside of the circle x2 +...
If a circle C with radius 1 rolls along the outside of the circle x2 + y2 = 49, a fixed point P on C traces out a curve called an epicycloid, with parametric equations x = 8 cos(t) − cos(8t), y = 8 sin(t) − sin(8t). Use one of the formulas below to find the area it encloses. A = C x dy = −C  y dx = 1/2 C x dy − y dx
A particle in R^2 travels along a circle centered at (x, y) with radius r >...
A particle in R^2 travels along a circle centered at (x, y) with radius r > 0. Parametrize this circular path r(t) as a function of the parameter variable t. Please prove that at all t values, the tangent vector r'(t) is orthogonal to the vector r(t) - vector(x, y)
Let y = x 2 + 3 be a curve in the plane. (a) Give a...
Let y = x 2 + 3 be a curve in the plane. (a) Give a vector-valued function ~r(t) for the curve y = x 2 + 3. (b) Find the curvature (κ) of ~r(t) at the point (0, 3). [Hint: do not try to find the entire function for κ and then plug in t = 0. Instead, find |~v(0)| and dT~ dt (0) so that κ(0) = 1 |~v(0)| dT~ dt (0) .] (c) Find the center and...
Find an equation for the line tangent to the curve at the point defined by the...
Find an equation for the line tangent to the curve at the point defined by the given value of t.​ Also, find the value of d2y/dx2 at this point. x= sec2t-1 , y= cos(t) , t= pi/4
Letr(t)=(4t2+1)i+2tjfor−2≤t≤2. (a) (10 pts) Draw a sketch of the curve C determined by r(t). (b) (5...
Letr(t)=(4t2+1)i+2tjfor−2≤t≤2. (a) (10 pts) Draw a sketch of the curve C determined by r(t). (b) (5 pts) Plot r(0) and label its endpoint P. (c) (10 pts) Plot the vector tangent to C at P . (d) (10 pts) Find the equation of the line tangent to C at P (you may give this parametrically or not). (e) (5 pts) Find the curvature K at P . (f) (5 pts) Find the radius of curvature ρ at P. (g) (5...