Question

Find the work done by the vector field F = 〈 2 xy + z/y ,...

Find the work done by the vector field F = 〈 2 xy + z/y , x^2 − xz/ y^2 , x/y 〉 and C is the line segment that goes from (1,3,2) to (1,4,6).

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
find the work done in the force camp F(x,y,z)=<xz,xy,zy> in a particle that moves along the...
find the work done in the force camp F(x,y,z)=<xz,xy,zy> in a particle that moves along the curve <t^2,-t^3,t^4> for 0 <= t <= 1 THE F is F(x,y,z)= <xz,yx,zy>
Using Stoke's Thm, find the work done by the vector field F(x, y, z) = 〈z,...
Using Stoke's Thm, find the work done by the vector field F(x, y, z) = 〈z, x, y〉, that moves an object along the triangle with vertices P(1, 0, 0), Q(0, 1, 0), R(0, 0, 1), in a counterclockwise manner, starting and ending at P.
Compute the work done by the force F= <sin(x+y), xy, (x^2)z>  in moving an object along the...
Compute the work done by the force F= <sin(x+y), xy, (x^2)z>  in moving an object along the trajectory that is the line segment from (1, 1, 1) to (2, 2, 2)  followed by the line segment from(2, 2, 2) to (−3, 6, 5) when force is measured in Newtons and distance in meters.
find the line integral (total work) of the vector forces field f over the curve c...
find the line integral (total work) of the vector forces field f over the curve c given below. f=xy,xz,y=xyi+xzj+yk. c=straight line from point (0,1,1) to point (2,1,3)
Find the flux of the vector field F (x, y, z) =< y, x, e^xz >...
Find the flux of the vector field F (x, y, z) =< y, x, e^xz > outward from the z−axis and across the surface S, where S is the portion of x^2 + y^2 = 9 with x ≥ 0, y ≥ 0 and −3 ≤ z ≤ 3.
Consider F and C below. F(x, y, z) = yz i + xz j + (xy...
Consider F and C below. F(x, y, z) = yz i + xz j + (xy + 12z) k C is the line segment from (2, 0, −3) to (4, 6, 3) (a) Find a function f such that F = ∇f. f(x, y, z) =       (b) Use part (a) to evaluate    C ∇f · dr along the given curve C.
2. Is the vector field F = < z cos(y), −xz sin(y), x cos(y)> conservative? Why...
2. Is the vector field F = < z cos(y), −xz sin(y), x cos(y)> conservative? Why or why not? If F is conservative, then find its potential function.
17 Find curl F A) F=z^2xi+y^2zj-z^2yk B) given vector field F= (x+xz^2)I +xyj +yzk, Find div...
17 Find curl F A) F=z^2xi+y^2zj-z^2yk B) given vector field F= (x+xz^2)I +xyj +yzk, Find div and curl of F.
Consider F and C below. F(x, y, z) = yz i + xz j + (xy...
Consider F and C below. F(x, y, z) = yz i + xz j + (xy + 18z) k C is the line segment from (1, 0, −3) to (4, 4, 1) (a) Find a function f such that F = ∇f. f(x, y, z) = (b) Use part (a) to evaluate C ∇f · dr along the given curve C.
Find the work done by the force field F(x,y,z) = yz i + xz j +...
Find the work done by the force field F(x,y,z) = yz i + xz j + xy k acting along the curve given by r(t) = t3 i + t2 j + tk from the point (1,1,1) to the point (8,4,2).
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT