Question

If f, g are differentiable at a, then prove the sum and product rules for derivatives.

If f, g are differentiable at a, then prove the sum and product rules for derivatives.

Homework Answers

Answer #1

Let f and g be two functions differentiable at a point a.

According to the Sum rule for derivatives,

We will use the limit definition of the derivative to prove the above Sum rule.

According to the Product rule for derivatives,

We will use the limit definition of the derivative to prove the above Product rule.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Prove that the function f(x) = |x| is not differentiable at zero, and show that the...
Prove that the function f(x) = |x| is not differentiable at zero, and show that the function g(x) = |x|*x is differentiable at zero.
Prove the product rule for derivatives using only the following definition of derivative: [f(x) - f(a)]...
Prove the product rule for derivatives using only the following definition of derivative: [f(x) - f(a)] / (x-a)
if the function f is differentiable at a, prove the function f is also continuous at...
if the function f is differentiable at a, prove the function f is also continuous at a.
Let z=f(a,b,c) where a=g(s,t), b=h(l(s+t),t), c=tsin(s). f,g,h,l are all differentiable functions. Compute the partial derivatives of...
Let z=f(a,b,c) where a=g(s,t), b=h(l(s+t),t), c=tsin(s). f,g,h,l are all differentiable functions. Compute the partial derivatives of z with respect to s and the partial of z with respect to t.
Prove or give a counterexample: If f is continuous on R and differentiable on R∖{0} with...
Prove or give a counterexample: If f is continuous on R and differentiable on R∖{0} with limx→0 f′(x) = L, then f is differentiable on R.
Prove that if f is differentiable and monotonically increasing on D , then f′(x) ≥ 0...
Prove that if f is differentiable and monotonically increasing on D , then f′(x) ≥ 0 for all x ∈ D.
Prove or give a counter example: If f is continuous on R and differentiable on R...
Prove or give a counter example: If f is continuous on R and differentiable on R ∖ { 0 } with lim x → 0 f ′ ( x ) = L , then f is differentiable on R .
Let I be an interval. Prove that if f is differentiable on I and if the...
Let I be an interval. Prove that if f is differentiable on I and if the derrivative f' be bounded on I then f uniformly continued on I!
Suppose f is differentiable on a bounded interval (a,b) but f is unbounded there. Prove that...
Suppose f is differentiable on a bounded interval (a,b) but f is unbounded there. Prove that f' is also unbounded in (a,b). Is the converse true?
Let f : R → R be differentiable with derivative f'. Prove that f(x + h)...
Let f : R → R be differentiable with derivative f'. Prove that f(x + h) = f(x) + f'(x)h + o(h), as h → 0.