Question

A mass weighing 24 pounds attached to the end of the spring and stretches it 4...

A mass weighing 24 pounds attached to the end of the spring and stretches it 4 inches. The mass is initially released from rest from a point 3 inches above the equilibrium position with a downward velocity of 2 ft/sec.

Find the equation of the motion?  

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
a mass weighing 24 pounds, attached to the end of a spring, stretches it 4 inches....
a mass weighing 24 pounds, attached to the end of a spring, stretches it 4 inches. initially, the mass is released from rest from a point of 2 inches above the equilibrium position. find the equation of motion. (g= 32 ft/s^2)
A mass weighing 32 pounds stretches a spring 2 feet. The mass is initially released from...
A mass weighing 32 pounds stretches a spring 2 feet. The mass is initially released from rest from a point 1 foot below the equilibrium position with an upward velocity of 2ft/sec. find the equation of the motion and solve it, determine the period and amplitude.
A mass weighing 8 pounds stretches a spring 2 feet. At t=0 the mass is released...
A mass weighing 8 pounds stretches a spring 2 feet. At t=0 the mass is released from a point 2 feet above the equilibrium position with a downward velocity of 4 (ft/s), determine the motion of the mass.
MASS SPRING SYSTEMS problem (Differential Equations) A mass weighing 6 pounds, attached to the end of...
MASS SPRING SYSTEMS problem (Differential Equations) A mass weighing 6 pounds, attached to the end of a spring, stretches it 6 inches. If the weight is released from rest at a point 4 inches below the equilibrium position, the system is immersed in a liquid that offers a damping force numerically equal to 3 times the instantaneous velocity, solve: a. Deduce the differential equation that models the mass-spring system. b. Calculate the displacements of the mass ? (?) at all...
A mass weighing 16 pounds stretches a spring 1 feet. It is initially released from a...
A mass weighing 16 pounds stretches a spring 1 feet. It is initially released from a point 1 foot above the equilibrium position with an upward velocity of 6 ft/s. Find the equation of motion. Determine the amplitude, period, and frequency of motion. (Use g = 32 ft/s2 for the acceleration due to gravity.)
MASS SPRING SYSTEMS problem (Differential Equations) A mass weighing 6 pounds, attached to the end of...
MASS SPRING SYSTEMS problem (Differential Equations) A mass weighing 6 pounds, attached to the end of a spring, stretches it 6 inches. If the weight is released from rest at a point 4 inches below the equilibrium position, and the entire system is immersed in a liquid that imparts a damping force numerically equal to 3 times the instantaneous velocity, solve: a. Deduce the differential equation that models the mass-spring system. b. Calculate the displacements of the mass ? (?)...
A mass weighing 20 pounds stretches a spring 6 inches. The mass is initially released from...
A mass weighing 20 pounds stretches a spring 6 inches. The mass is initially released from rest from a point 4 inches below the equilibrium position. (a) Find the position x of the mass at the times t = π/12, π/8, π/6, π/4, and 9π/32 s. (Use g = 32 ft/s2 for the acceleration due to gravity.)
A mass weighing 20 pounds stretches a spring 6 inches. The mass is initially released from...
A mass weighing 20 pounds stretches a spring 6 inches. The mass is initially released from rest from a point 4 inches below the equilibrium position. (a) Find the position x of the mass at the times t = pi/12, pi/8, pi/6, pi/4, and 9pi/32 s. Use g = 32 ft/s^2 for the acceleration due to gravity. (b) what is the velocity of the mass when t = 3pi/16 s?
A mass weighing 16 pounds stretches a spring 8 3 feet. The mass is initially released...
A mass weighing 16 pounds stretches a spring 8 3 feet. The mass is initially released from rest from a point 3 feet below the equilibrium position, and the subsequent motion takes place in a medium that offers a damping force that is numerically equal to 1 2 the instantaneous velocity. Find the equation of motion x(t) if the mass is driven by an external force equal to f(t) = 20 cos(3t). (Use g = 32 ft/s2 for the acceleration...
A mass weighing 16 pounds stretches a spring 8 3 feet. The mass is initially released...
A mass weighing 16 pounds stretches a spring 8 3 feet. The mass is initially released from rest from a point 3 feet below the equilibrium position, and the subsequent motion takes place in a medium that offers a damping force that is numerically equal to 1 2 the instantaneous velocity. Find the equation of motion x(t) if the mass is driven by an external force equal to f(t) = 10 cos(3t). (Use g = 32 ft/s2 for the acceleration...