Question

6) please show steps and explanation. a)Suppose r(t) = < cos(3t), sin(3t),4t >. Find the equation...

6) please show steps and explanation.

a)Suppose r(t) = < cos(3t), sin(3t),4t >.

Find the equation of the tangent line to r(t) at the point (-1, 0, 4pi).

b) Find a vector orthogonal to the plane through the points P (1, 1, 1), Q(2, 0, 3), and R(1, 1, 2) and the area of the triangle PQR.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
4) Consider the polar curve r=e2theta a) Find the parametric equations x = f(θ), y =...
4) Consider the polar curve r=e2theta a) Find the parametric equations x = f(θ), y = g(θ) for this curve. b) Find the slope of the line tangent to this curve when θ=π. 6) a)Suppose r(t) = < cos(3t), sin(3t),4t >. Find the equation of the tangent line to r(t) at the point (-1, 0, 4pi). b) Find a vector orthogonal to the plane through the points P (1, 1, 1), Q(2, 0, 3), and R(1, 1, 2) and the...
Find the derivative r '(t) of the vector function r(t). <t cos 3t , t2, t...
Find the derivative r '(t) of the vector function r(t). <t cos 3t , t2, t sin 3t>
6. Given vector function r(t) = t2 − 2t, 1 + 3t, 1 3 t 3...
6. Given vector function r(t) = t2 − 2t, 1 + 3t, 1 3 t 3 + 1 2 t 2 i (a) Find r 0 (t) (b) Find the unit tangent vector to the space curve of r(t) at t = 3. (c) Find the vector equation of the tangent line to the curve at t = 3
Find a unit tangent vector to the curve r = 3 cos 3t i + 3...
Find a unit tangent vector to the curve r = 3 cos 3t i + 3 sin 2t j at t = π/6 .
Consider the following vector function. r(t) = 6t2, sin(t) − t cos(t), cos(t) + t sin(t)...
Consider the following vector function. r(t) = 6t2, sin(t) − t cos(t), cos(t) + t sin(t) ,    t > 0 (a) Find the unit tangent and unit normal vectors T(t) and N(t). T(t) = N(t) = (b) Use this formula to find the curvature. κ(t) =
(a) The impulse response of a system is given as: c(t) = 2t2 – 4e-4t[cos(3t) -7sin(4t)]...
(a) The impulse response of a system is given as: c(t) = 2t2 – 4e-4t[cos(3t) -7sin(4t)] t > 0. Without applying LT (shortcut) find all closed loop poles (show them in s-plane). Also find all time constants, damping ratios, and damped/undamped frequencies.
With the parametric equation x=cos(t)+tsin(t), y=sin(t)-tcos(t) , 0 ≤ t ≤ 2π) Find the length of...
With the parametric equation x=cos(t)+tsin(t), y=sin(t)-tcos(t) , 0 ≤ t ≤ 2π) Find the length of the given curve. (10 point)     2) In the circle of r = 6, the area above the r = 3 cos (θ) line Write the integral or integrals expressing the area of ​​this region by drawing. (10 point)
6.) Let ~r(t) =< 3 cos t, -2 sin t > for 0 < t <...
6.) Let ~r(t) =< 3 cos t, -2 sin t > for 0 < t < pi. a) Sketch the curve. Make sure to pay attention to the parameter domain, and indicate the orientation of the curve on your graph. b) Compute vector tangent to the curve for t = pi/4, and sketch this vector on the graph.
Find the equation of the tangent line to the curve r = 2 sin ⁡ θ...
Find the equation of the tangent line to the curve r = 2 sin ⁡ θ + cos ⁡ θ at the point ( x 0 , y 0 ) = ( − 1 , 3 )
Given that the acceleration vector is a(t)=(-9 cos(3t))i+(-9 sin(3t))j+(-5t)k, the initial velocity is v(0)=i+k, and the...
Given that the acceleration vector is a(t)=(-9 cos(3t))i+(-9 sin(3t))j+(-5t)k, the initial velocity is v(0)=i+k, and the initial position vector is r(0)=i+j+k, compute: A. The velocity vector v(t) B. The position vector r(t)
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT