Question

show that L: x=1-2t .y=t .z=-t and the plane P: 6x-3y+3z=1 are parpeudicular then find the...

show that L: x=1-2t .y=t .z=-t

and the plane P: 6x-3y+3z=1

are parpeudicular then find the point of intersect

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
show that L: x=-1+t , y=3+2t ,z=-t and the plane P : 2x-xy-2z=-3 are parallel then...
show that L: x=-1+t , y=3+2t ,z=-t and the plane P : 2x-xy-2z=-3 are parallel then find the distance btween them
Consider plane P: 4x -y + 2z = 8, line: <x, y, z> = <1+t, -1+2t,...
Consider plane P: 4x -y + 2z = 8, line: <x, y, z> = <1+t, -1+2t, 3t>, and point Q(2,-1,3) b) Find the perpendicular distance between point Q and plane P
#7 Solve for x, y and z 6x+3y+z=-27 x-3y+2z+10 17x-2y+3z=-65
#7 Solve for x, y and z 6x+3y+z=-27 x-3y+2z+10 17x-2y+3z=-65
Consider the following planes. x + y + z = 1,     x + 3y + 3z =...
Consider the following planes. x + y + z = 1,     x + 3y + 3z = 1 (a) Find parametric equations for the line of intersection of the planes. (Use the parameter t.) (x(t), y(t), z(t)) =       (b) Find the angle between the planes. (Round your answer to one decimal place.) °
Let T(x,y,z) = (13x − 9y + 4z,6x + 5y − 3z) and v = (1,−2,1)....
Let T(x,y,z) = (13x − 9y + 4z,6x + 5y − 3z) and v = (1,−2,1). Find the standard matrix for the linear transformation T and use it to find the image of the vector v (that is, use it to find T(v)).
Consider the line L with parametric equations x = 5t − 2, y = −t +...
Consider the line L with parametric equations x = 5t − 2, y = −t + 4, z= 2t + 5. Consider the plane P given by the equation x+3y−z=6. (a) Explain why the line L is parallel to P b) Find the distance from L to P .
Show that the two lines with equations (x, y, z) = (-1, 3, -4) + t(1,...
Show that the two lines with equations (x, y, z) = (-1, 3, -4) + t(1, -1, 2) and (x, y, z) = (5, -3, 2) + s(-2, 2, 2) are perpendicular. Determine how the two lines interact. Find the point of intersection of the line (x, y, z) = (1, -2, 1) + t(4, -3, -2) and the plane x – 2y + 3z = -8.
Consider the lines in space whose parametric equations are as follows line #1 x=2+3t, y=3-t, z=2t...
Consider the lines in space whose parametric equations are as follows line #1 x=2+3t, y=3-t, z=2t line #2 x=6-4s, y=2+s, z=s-1 a Find the point where the lines intersect. b Compute the angle formed between the two lines. c Compute the equation for the plane that contains these two lines
1. Let T(x, y, z) = (x + z, y − 2x, −z + 2y) and...
1. Let T(x, y, z) = (x + z, y − 2x, −z + 2y) and S(x, y, z) = (2y − z, x − z, y + 3x). Use matrices to find the composition S ◦ T. 2. Find an equation of the tangent plane to the graph of x 2 − y 2 − 3z 2 = 5 at (6, 2, 3). 3. Find the critical points of f(x, y) = (x 2 + y 2 )e −y...
Find an equation for the tangent plane to: z=arctan(x^3y^2)z at P=(-1,-2,-1.326) .
Find an equation for the tangent plane to: z=arctan(x^3y^2)z at P=(-1,-2,-1.326) .
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT