Solve the following pair of simultaneous equations for x and y. qx+ (1− p)y = R and px+ (1−q)y = S.
qx + ( 1-p) y = R
px + (1-q)y = S
multiplying equation 1 by -p and equation 2 by q
-pqx - p ( 1- p)y = Rp
pqx + q ( 1 - q) y = Sq
-----------------------------------
-p ( 1 - p) y + q( 1- q) y = Rp + Sq
-py + p^2y + qy - q^2 y = Rp + Sq
y ( p^2 - q^2 + q - p ) = Rp + Sq
y = (Rp + Sq) / ( p^2 - q^2 + q - p )
plugging this value of y into equation 1
qx + ( 1- p ) (Rp + Sq) / ( p^2 - q^2 + q - p ) = R
qx = R - ( 1- p ) (Rp + Sq) / ( p^2 - q^2 + q - p )
x = ( 2Rp^2 - Rq^2 + Rq - 2Rp - Sq + Spq ) / q ( p^2 - q^2 + q - p )
Get Answers For Free
Most questions answered within 1 hours.