Question

Given the function g(x)=4x3−24x2−60xg(x)=4x3-24x2-60x, find the first derivative, g'(x)g′(x). g'(x)=g′(x)=    Notice that g'(x)=0g′(x)=0 when x=−1x=-1, that...

Given the function g(x)=4x3−24x2−60xg(x)=4x3-24x2-60x, find the first derivative, g'(x)g′(x).
g'(x)=g′(x)=   

Notice that g'(x)=0g′(x)=0 when x=−1x=-1, that is, g'(−1)=0g′(-1)=0.

Now, we want to know whether there is a local minimum or local maximum at x=−1x=-1, so we will use the second derivative test.
Find the second derivative, g''(x)g′′(x).
g''(x)=g′′(x)=   

Evaluate g''(−1)g′′(-1).
g''(−1)=g′′(-1)=

Based on the sign of this number, does this mean the graph of g(x)g(x) is concave up or concave down at x=−1x=-1?
[Answer either up or down -- watch your spelling!!]
At x=−1x=-1 the graph of g(x)g(x) is concave

Based on the concavity of g(x)g(x) at x=−1x=-1, does this mean that there is a local minimum or local maximumat x=−1x=-1?
[Answer either minimum or maximum -- watch your spelling!!]
At x=−1x=-1 there is a local

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Given the function g(x)=4x^3−24x^2+36x, find the first derivative, g'(x) g′(x)= ??? Notice that g'(x)=0 when x=1,...
Given the function g(x)=4x^3−24x^2+36x, find the first derivative, g'(x) g′(x)= ??? Notice that g'(x)=0 when x=1, that is, g'(1)=0 Now, we want to know whether there is a local minimum or local maximum at x=1, so we will use the second derivative test. Find the second derivative, g''(x) g''(x)=???? Evaluate g"(1) g''(1)=??? Based on the sign of this number, does this mean the graph of g(x) is concave up or concave down at x=1? [Answer either up or down --...
Consider the following. f(x) = 4x3 − 6x2 − 24x + 4 (a) Find the intervals...
Consider the following. f(x) = 4x3 − 6x2 − 24x + 4 (a) Find the intervals on which f is increasing or decreasing. (Enter your answers using interval notation.) increasing decreasing (b) Find the local maximum and minimum values of f. (If an answer does not exist, enter DNE.) local minimum value local maximum value (c) Find the intervals of concavity and the inflection points. (Enter your answers using interval notation.) concave up concave down inflection point (x, y) =
1) Use the First Derivative Test to find the local maximum and minimum values of the...
1) Use the First Derivative Test to find the local maximum and minimum values of the function. (Enter your answers as a comma-separated list. If an answer does not exist, enter DNE.): g(u) = 0.3u3 + 1.8u2 + 146 a) local minimum values:    b) local maximum values:    2) Consider the following: f(x) = x4 − 32x2 + 6 (a) Find the intervals on which f is increasing or decreasing. (Enter your answers using interval notation.) increasing:    decreasing:...
Given the function g(x) = x3-3x + 1, use the first and second derivative tests to...
Given the function g(x) = x3-3x + 1, use the first and second derivative tests to (a) Find the intervals where g(x) is increasing and decreasing. (b) Find the points where the function reaches all realtive maxima and minima. (c) Determine the intervals for which g(x) is concave up and concave down. (d) Determine all points of inflection for g(x). (e) Graph g(x). Label your axes, extrema, and point(s) of inflection.
1. Use the first derivative test and the second derivative test to determine where each function...
1. Use the first derivative test and the second derivative test to determine where each function is​ increasing, decreasing, concave​ up, and concave down. y=20x e^-x , x>0 2. Use the first derivative and the second derivative test to determine where each function is​ increasing, decreasing, concave​ up, and concave down. y=4sin(πx^2), 10≤x≤1
1.) Suppose g(x) = x2− 3x. On the interval [0, 4], use calculus to identify x-coordinate...
1.) Suppose g(x) = x2− 3x. On the interval [0, 4], use calculus to identify x-coordinate of each local / global minimum / maximum value of g(x). 2.) For the function f(x) = x 4 − x 3 + 7... a.) Show that the critical points are at x = 0 and x = 3/4 (Plug these into the derivative, what you get should tell you that they are critical points). b.) Identify all intervals where f(x) is increasing c.)...
f(x)= (x^2+2x-1)/x^2) Find the a.) x-intercept b.) vertical and horizontal asymptote c.) first and second derivative...
f(x)= (x^2+2x-1)/x^2) Find the a.) x-intercept b.) vertical and horizontal asymptote c.) first and second derivative d.) Is it increasing or decreasing? Identify any local extrema e.) Is it concave up and down? Identify any points of reflection.
Given the function h(x)=e^-x^2 Find first derivative f ‘ and second derivative f'' Find the critical...
Given the function h(x)=e^-x^2 Find first derivative f ‘ and second derivative f'' Find the critical Numbers and determine the intervals where h(x) is increasing and decreasing. Find the point of inflection (if it exists) and determine the intervals where h(x) concaves up and concaves down. Find the local Max/Min (including the y-coordinate)
1. At x = 1, the function g( x ) = 5x ln(x) − 3x is...
1. At x = 1, the function g( x ) = 5x ln(x) − 3x is . . . Group of answer choices has a critical point and is concave up decreasing and concave up decreasing and concave down increasing and concave up increasing and concave down 2. The maximum value of the function f ( x ) = 5xe^−2x over the domain [ 0 , 2 ] is y = … Group of answer choices 10/e 0 5/2e e^2/5...
consider the function f(x)=3x-5/sqrt x^2+1. given f'(x)=5x+3/(x^2+1)^3/2 and f''(x)=-10x^2-9x+5/(x^2+1)^5/2 a) find the local maximum and minimum...
consider the function f(x)=3x-5/sqrt x^2+1. given f'(x)=5x+3/(x^2+1)^3/2 and f''(x)=-10x^2-9x+5/(x^2+1)^5/2 a) find the local maximum and minimum values. Justify your answer using the first or second derivative test . round your answers to the nearest tenth as needed. b)find the intervals of concavity and any inflection points of f. Round to the nearest tenth as needed. c)graph f(x) and label each important part (domain, x- and y- intercepts, VA/HA, CN, Increasing/decreasing, local min/max values, intervals of concavity/ inflection points of f?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT