Question

Use the Principle of Mathematical Induction to show that the given statement is true for all...

Use the Principle of Mathematical Induction to show that the given statement is true for all natural numbers n.

1 + 4 + 4^2 + ... + 4^n - 1 = 1/3 (4^n - 1)

Also, I looked at the process to get the answer in the textbook and when it comes to the step of k + 1, how does one just multiply by 3? Is there a property that I'm forgetting? Thank you!

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Use the Principle of Mathematical Induction to show that the given statement is true for all...
Use the Principle of Mathematical Induction to show that the given statement is true for all natural numbers n. 2 + 5 + 8 + ... + (3n - 1) = 1/2n (3n + 1)
Prove the following statement by mathematical induction. For every integer n ≥ 0, 2n <(n +...
Prove the following statement by mathematical induction. For every integer n ≥ 0, 2n <(n + 2)! Proof (by mathematical induction): Let P(n) be the inequality 2n < (n + 2)!. We will show that P(n) is true for every integer n ≥ 0. Show that P(0) is true: Before simplifying, the left-hand side of P(0) is _______ and the right-hand side is ______ . The fact that the statement is true can be deduced from that fact that 20...
Question 1 - Solve the following questions: 1.1 - Prove by the Principle of Mathematical Induction...
Question 1 - Solve the following questions: 1.1 - Prove by the Principle of Mathematical Induction that 1 × 1! + 2 × 2! + 3 × 3! + ... + n × n! = (n + 1)! – 1 for all natural numbers n. 1.2 - a) How many license plates can be made using either four digits followed by five uppercase English letters or six uppercase English letters followed by three digits? b) Seven women and nine men...
Use the principle of Mathematics Induction to prove that for all natural numbers 3^(3n)-26n-1 is a...
Use the principle of Mathematics Induction to prove that for all natural numbers 3^(3n)-26n-1 is a multiple of 169.
Determine what is wrong with the following “proof” by induction that all dogs are the same...
Determine what is wrong with the following “proof” by induction that all dogs are the same breed. Theorem 1. All dogs are the same breed. Proof. For each natural number, let P(n) be the statement “any set of n dogs consists entirely of dogs of the same breed.” We demonstrate that for each natural number n, P(n) is true. P(1) is true, because a set with only one dog consists entirely of dogs of the same breed. Now, let k...
1. Use mathematical induction to show that, ∀n ≥ 3, 2n2 + 1 ≥ 5n 2....
1. Use mathematical induction to show that, ∀n ≥ 3, 2n2 + 1 ≥ 5n 2. Letting s1 = 0, find a recursive formula for the sequence 0, 1, 3, 7, 15,... 3. Evaluate. (a) 55mod 7. (b) −101 div 3. 4. Prove that the sum of two consecutive odd integers is divisible by 4 5. Show that if a|b then −a|b. 6. Prove or disprove: For any integers a,b, c, if a ∤ b and b ∤ c, then...
1) Use Strong Induction to show that for each n ≥ 1, 10^n may be written...
1) Use Strong Induction to show that for each n ≥ 1, 10^n may be written as the sum of two perfect squares. (A natural number k is a perfect square if k = j 2 for some natural number j. These are the numbers 1, 4, 9, 16, . . . .) 2)Show that if A ⊂ B, A is finite, and B is infinite, then B \ A is infinite. Hint: Suppose B \ A is finite, and...
We are given a sequence of numbers: 1, 3, 5, 7, 9, . . . and...
We are given a sequence of numbers: 1, 3, 5, 7, 9, . . . and want to prove that the closed formula for the sequence is an = 2n – 1.          What would the next number in the sequence be? What is the recursive formula for the sequence? Is the closed formula true for a1? What about a2? What about a3? Critical Thinking How many values would we have to check before we could be sure that the...
***Python Hailstones, also known as the Collatz sequence, are a mathematical curiosity. For any number in...
***Python Hailstones, also known as the Collatz sequence, are a mathematical curiosity. For any number in the sequence, the next number in the sequence is determined by two simple rules: If the current number n is odd, the next number in the sequence is equal to 3 * n + 1 If the current number n is even instead, the next number in the sequence is equal to one half of n (i.e., n divided by 2) We repeat this...
1)The use of the military in international disaster relief must be consistent with this principle: Equality...
1)The use of the military in international disaster relief must be consistent with this principle: Equality Impartiality Egalitarianism All of the above 2) Facilitating a tabletop exercise is an example of preparedness. True False 3) Which is not a part of the process for mass fatality management Retrieve bodies Cremate or bury bodies Coordinate with law enforcement Publicly release names of the deceased All of the above 4) The __________ is a key accomplishment by the UN that contains targets...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT