Question

Find an equation of the line that satisfies the given conditions. Through (5, 7); perpendicular to the line y = 4

Find an equation of the line that satisfies the given conditions. Through (−5, −7); perpendicular to the line passing through (−2, 5) and (2, 3)

Answer #1

solution

(1) the equation of the line perpendicular to y=4 we can write as 0x+y-4=0

now the equation of any straight line perpendicular to 0x+y-4 =0 is of the form

x-0y+k=0 ...(1) interchange coeffient of x and y

the point (5,7) lies on the line

x-0y+k=0

5-0+k=0

k=-5 substitute in (1)

the equation of the required line is x-5=0

(or)x=5

(2) let the given points be A(-2,5) B(2,3)

slope of AB m_{1} =y_{2}-y_{1}
/x_{2}-x_{1}

_{ } 3-5/2-(-2)

=-2/4

=-1/2

let m_{2} be the slope of the required line since the
required line is perpendicular to AB

therefore m_{1* }m_{2} =-1

-1/2*m_{2} =-1

m_{2} =-1*-2/1

m_{2 =2}

the required line passes through the point(-5,-7)

the equation of required line

y-y1=m2(x-x1)

y-(-7)=2(x-(-5)

y+7 =2(x+5)

y+7=2x +10

2x-y+3 =0 this is the required equation

Find an equation of the line that satisfies the given
conditions. Through (−4, −13); perpendicular to the line passing
through (−1, −1) and (3, −3)

Find the equation of the line passing through the point (1,2,3)
and perpendicular to the lines r1(t) = (3 - 2t, 5 + 8t,
7 - 4t) and r2(t) = (-2t, 5 + t, 7 - t)

Find an equation of the circle that satisfies the given
conditions.
Center (2,-3) and passes through (5,2)

Find the equation of the line through (8,−6) that is
perpendicular to the line y=−x7−5.

find the parametric equation of the line passing through the
point (1,7,2), parallel to the plane x+y+z=2 and perpendicular to
the line x=2t, y=(3t+5)2, and z=(4t-1)/3

Use the given conditions to write an equation for the line in
point-slope form and general form. Passing through (1,-3) and
perpendicular to the line whose equation is x-6y-5=0. The equation
of the line in point-slope form is _ .(Type an equation. Use
integers or fractions for any numbers in the equation.)
The equation of the line in general form is ___ = 0 (Type an
expression using x and y as the variables. Simplify your answer.
Use integers or...

Find the equation of the line that passes through the point
(2,3,4) and is perpendicular to the plane 2x-y + 3z = 4

Find the equation of a line through the point (4, -3, 1) and is
perpendicular to the plane 2x – y + z = 6. Give the answer in
parametric form and in vector form.

1.Find an equation for the plane that is perpendicular to the
line l(t) = (8, 0, 4)t + (5, −1, 1) and passes through (6, −1,
0).
2.Find an equation for the plane that is perpendicular to the
line l(t) = (−3, −6, 9)t + (0, 7, 1)and passes
through (2, 2, −1).

Find an equation for the plane passing through the point
(4,−2,−1) that is perpendicular to the line
L(t)=〈2t−4,4−4t,2−4t〉.

ADVERTISEMENT

Get Answers For Free

Most questions answered within 1 hours.

ADVERTISEMENT

asked 3 minutes ago

asked 33 minutes ago

asked 38 minutes ago

asked 44 minutes ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 2 hours ago

asked 2 hours ago

asked 2 hours ago