Question

Calculate the line integral of the vector field ?=〈?,?,?2+?2〉F=〈y,x,x2+y2〉 around the boundary curve, the curl of...

Calculate the line integral of the vector field ?=〈?,?,?2+?2〉F=〈y,x,x2+y2〉 around the boundary curve, the curl of the vector field, and the surface integral of the curl of the vector field.

The surface S is the upper hemisphere

?2+?2+?2=36, ?≥0x2+y2+z2=36, z≥0

oriented with an upward‑pointing normal.

(Use symbolic notation and fractions where needed.)

∫?⋅??=∫CF⋅dr=

curl(?)=curl(F)=

∬curl(?)⋅??=∬Scurl(F)⋅dS=

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Evaluate the surface integral S F · dS for the given vector field F and the...
Evaluate the surface integral S F · dS for the given vector field F and the oriented surface S. In other words, find the flux of F across S. For closed surfaces, use the positive (outward) orientation. F(x, y, z) = yi − xj + 2zk, S is the hemisphere x2 + y2 + z2 = 4, z ≥ 0, oriented downward
Compute the surface integral over the given oriented surface: F=〈0,9,x2〉F=〈0,9,x2〉 ,  hemisphere x2+y2+z2=4x2+y2+z2=4, z≥0z≥0 ,  outward-pointing normal
Compute the surface integral over the given oriented surface: F=〈0,9,x2〉F=〈0,9,x2〉 ,  hemisphere x2+y2+z2=4x2+y2+z2=4, z≥0z≥0 ,  outward-pointing normal
Evaluate the surface integral F · dS for the given vector field F and the oriented...
Evaluate the surface integral F · dS for the given vector field F and the oriented surface S. In other words, find the flux of F across S. For closed surfaces, use the positive (outward) orientation. F(x, y, z) = x2 i + y2 j + z2 k S is the boundary of the solid half-cylinder 0 ≤ z ≤ 4 − y2 , 0 ≤ x ≤ 5
Evaluate the surface integral S F · dS for the given vector field F and the...
Evaluate the surface integral S F · dS for the given vector field F and the oriented surface S. In other words, find the flux of F across S. For closed surfaces, use the positive (outward) orientation. F(x, y, z) = x2 i + y2 j + z2 k S is the boundary of the solid half-cylinder 0 ≤ z ≤ 25 − y2 , 0 ≤ x ≤ 3
Evaluate the surface integral ∫∫S F · dS for the given vector field F and the...
Evaluate the surface integral ∫∫S F · dS for the given vector field F and the oriented surface S. In other words, find the flux of F across S. For closed surfaces, use the positive (outward) orientation. F(x, y, z) = xz i + x j + y k S is the hemisphere x2 + y2 + z2 = 4, y ≥ 0, oriented in the direction of the positive y-axis. Incorrect: Your answer is incorrect.
Evaluate the surface integral S F · dS for the given vector field F and the...
Evaluate the surface integral S F · dS for the given vector field F and the oriented surface S. In other words, find the flux of F across S. For closed surfaces, use the positive (outward) orientation. F(x, y, z) = yi − xj + 4zk, S is the hemisphere x^2 + y2^ + z^2 = 4, z ≥ 0, oriented downward
Evaluate the surface integral Evaluate the surface integral S F · dS for the given vector...
Evaluate the surface integral Evaluate the surface integral S F · dS for the given vector field F and the oriented surface S. In other words, find the flux of F across S. For closed surfaces, use the positive (outward) orientation. F(x, y, z) = x i + y j + 9 k S is the boundary of the region enclosed by the cylinder x2 + z2 = 1 and the planes y = 0 and x + y =...
Evaluate the surface integral    S F · dS for the given vector field F and...
Evaluate the surface integral    S F · dS for the given vector field F and the oriented surface S. In other words, find the flux of F across S. For closed surfaces, use the positive (outward) orientation. F(x, y, z) = x i − z j + y k S is the part of the sphere x2 + y2 + z2 = 4 in the first octant, with orientation toward the origin
Evaluate the surface integral S F · dS for the given vector field F and the...
Evaluate the surface integral S F · dS for the given vector field F and the oriented surface S. In other words, find the flux of F across S. For closed surfaces, use the positive (outward) orientation. F(x, y, z) = x i − z j + y k S is the part of the sphere x2 + y2 + z2 = 25 in the first octant, with orientation toward the origin
Evaluate the surface integral ∫∫S F · dS for the given vector field F and the...
Evaluate the surface integral ∫∫S F · dS for the given vector field F and the oriented surface S. In other words, find the flux of F across S. For closed surfaces, use the positive (outward) orientation. F(x, y, z) = x i - z j + y k S is the part of the sphere x2 + y2 + z2 = 81 in the first octant, with orientation toward the origin.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT