a) Apply the Gram–Schmidt process to find an orthogonal basis for S.
S=span{[110−1],[1301],[4220]}
b) Find projSu.
S = subspace in Exercise 14; u=[1010]
c) Find an orthonormal basis for S.
S= subspace in Exercise 14.
We presume that S=span{(1,1,0,−1),(1,3,0,1),(4,2,2,0)} = span {v1,v2,v3} (say).
Then {e1,e2,e3} = {(1/√3, 1/√3,0,- 1/√3), (0,2/√8,0,2/√8), (2/√10,-1/√10,2/√10,1/√10)} is an orthonormal basis for S.
Get Answers For Free
Most questions answered within 1 hours.