Question

Prove the following statement by mathematical induction. You will not receive any credit unless you give...

Prove the following statement by mathematical induction. You will not receive any credit unless you give a proof by induction. Foreverypositiveintegern?Z+, wehave1+2+...+n=n(n+1)/2

Homework Answers

Answer #1

Prove 1+2+...+n=n(n+1)/2 using a proof by induction.

n=1: 1=1(2)/2=1 checks.

Assume n=k holds: 1+2+...+k=k(k+1)/2 (Induction Hyypothesis)
Show n=k+1 holds: 1+2+...+k+(k+1)=(k+1)((k+1)+1)/2
I just substitute k and k+1 in the formula to get these lines. Notice that I write out what I want to prove.

Now I start with the left side of the equation I want to show and proceed using the induction hypothesis and algebra to reach the right side of the equation. 1+2+...+(k+1)=1+2+...+k+(k+1)
=k(k+1)/2 + (k+1) by the Induction Hypothesis
=(k(k+1)+2(k+1))/2 by 2/2=1 and distridution of division over addition
=(k+2)(k+1)/2 by distribution of multiplication over addition
=(k+1)(k+2)/2 by commutativity of multiplication

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Using mathematical induction (or otherwise) prove the following statement: There is no m ∈ Z with...
Using mathematical induction (or otherwise) prove the following statement: There is no m ∈ Z with 0 < m < 1.
Prove the following statement by mathematical induction. For every integer n ≥ 0, 2n <(n +...
Prove the following statement by mathematical induction. For every integer n ≥ 0, 2n <(n + 2)! Proof (by mathematical induction): Let P(n) be the inequality 2n < (n + 2)!. We will show that P(n) is true for every integer n ≥ 0. Show that P(0) is true: Before simplifying, the left-hand side of P(0) is _______ and the right-hand side is ______ . The fact that the statement is true can be deduced from that fact that 20...
Please note n's are superscripted. (a) Use mathematical induction to prove that 2n+1 + 3n+1 ≤...
Please note n's are superscripted. (a) Use mathematical induction to prove that 2n+1 + 3n+1 ≤ 2 · 4n for all integers n ≥ 3. (b) Let f(n) = 2n+1 + 3n+1 and g(n) = 4n. Using the inequality from part (a) prove that f(n) = O(g(n)). You need to give a rigorous proof derived directly from the definition of O-notation, without using any theorems from class. (First, give a complete statement of the definition. Next, show how f(n) =...
Prove by mathematical induction that for all odd n ∈ N we have 8|(n2 − 1)....
Prove by mathematical induction that for all odd n ∈ N we have 8|(n2 − 1). To receive credit for this problem, you must show all of your work with correct notation and language, write complete sentences, explain your reasoning, and do not leave out any details. Further hints: write n=2s+1 and write your problem statement in terms of P(s).
Discrete math Use mathematical induction to prove that n(n+5) is divisible by 2 for any positive...
Discrete math Use mathematical induction to prove that n(n+5) is divisible by 2 for any positive integer n.
Use Mathematical Induction to prove that for any odd integer n >= 1, 4 divides 3n+1.
Use Mathematical Induction to prove that for any odd integer n >= 1, 4 divides 3n+1.
Prove by mathematical induction one of the following statements : a) 1 · 2 + 2...
Prove by mathematical induction one of the following statements : a) 1 · 2 + 2 · 3 + 3 · 4 + . . . + n(n + 1) = n(n+1)(n+2) 3 for all integer n ≥ 1. b) u1 − u2 + u3 − u4 + . . . + (−1)n+1un = 1 + (−1)n+1un−1 for all integer n ≥ 1. (un denotes the nth Fibonacci number)
Use mathematical induction to prove that 12+22+32+42+52+...+(n-1)2+n2= n(n+1)(2n+1)/6. (First state which of the 3 versions of...
Use mathematical induction to prove that 12+22+32+42+52+...+(n-1)2+n2= n(n+1)(2n+1)/6. (First state which of the 3 versions of induction: WOP, Ordinary or Strong, you plan to use.) proof: Answer goes here.
Prove, using mathematical induction, that (1 + 1/ 2)^ n ≥ 1 + n /2 ,whenever...
Prove, using mathematical induction, that (1 + 1/ 2)^ n ≥ 1 + n /2 ,whenever n is a positive integer.
Use Mathematical Induction to prove that 3 | (n^3 + 2n) for all integers n =...
Use Mathematical Induction to prove that 3 | (n^3 + 2n) for all integers n = 0, 1, 2, ....
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT