Question

find the differential equation using laplace transform. y'' + 4y = 15et

find the differential equation using laplace transform.

y'' + 4y = 15et

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Use the Laplace transform to solve the following initial value problem y”+4y=cos(8t) y(0)=0, y’(0)=0 First, use...
Use the Laplace transform to solve the following initial value problem y”+4y=cos(8t) y(0)=0, y’(0)=0 First, use Y for the Laplace transform of y(t) find the equation you get by taking the Laplace transform of the differential equation and solving for Y: Y(s)=? Find the partial fraction decomposition of Y(t) and its inverse Laplace transform to find the solution of the IVP: y(t)=?
solve the following DE using laplace transform y"+4y'+4y=0; y(0)=-2, y'(0)=9
solve the following DE using laplace transform y"+4y'+4y=0; y(0)=-2, y'(0)=9
Consider the differential equation y′′(t)+4y′(t)+5y(t)=74exp(−8t), with initial conditions y(0)=12, and y′(0)=−44. A)Find the Laplace transform of...
Consider the differential equation y′′(t)+4y′(t)+5y(t)=74exp(−8t), with initial conditions y(0)=12, and y′(0)=−44. A)Find the Laplace transform of the solution Y(s).Y(s). Write the solution as a single fraction in s. Y(s)= ______________ B) Find the partial fraction decomposition of Y(s). Enter all factors as first order terms in s, that is, all terms should be of the form (c/(s-p)), where c is a constant and the root p is a constant. Both c and p may be complex. Y(s)= ____ + ______...
using laplace transform, solve: y''+4y=8cos2t; y(0)=0, y'(0)=4
using laplace transform, solve: y''+4y=8cos2t; y(0)=0, y'(0)=4
Consider the initial value problem y′′+4y=16t,y(0)=8,y′(0)=6.y″+4y=16t,y(0)=8,y′(0)=6. Take the Laplace transform of both sides of the given...
Consider the initial value problem y′′+4y=16t,y(0)=8,y′(0)=6.y″+4y=16t,y(0)=8,y′(0)=6. Take the Laplace transform of both sides of the given differential equation to create the corresponding algebraic equation. Denote the Laplace transform of y(t) by Y(s). Do not move any terms from one side of the equation to the other (until you get to part (b) below). Solve your equation for Y(s) Y(s)=L{y(t)}=__________ Take the inverse Laplace transform of both sides of the previous equation to solve for y(t)y(t). y(t)=__________
Solve the initial value problem using the method of the laplace transform. y"+4y'+4y=8t,y(0)=-4,y'(0)=4
Solve the initial value problem using the method of the laplace transform. y"+4y'+4y=8t,y(0)=-4,y'(0)=4
Given the differential equation y''−2y'+y=0,  y(0)=1,  y'(0)=2 Apply the Laplace Transform and solve for Y(s)=L{y} Y(s) =     Now...
Given the differential equation y''−2y'+y=0,  y(0)=1,  y'(0)=2 Apply the Laplace Transform and solve for Y(s)=L{y} Y(s) =     Now solve the IVP by using the inverse Laplace Transform y(t)=L^−1{Y(s)} y(t) =
Laplace transform: y"+4y=-2cost, y(0)=-3, y'(0)=1
Laplace transform: y"+4y=-2cost, y(0)=-3, y'(0)=1
Solve the system of differential equations using Laplace transform: y'' + x + y = 0...
Solve the system of differential equations using Laplace transform: y'' + x + y = 0 x' + y' = 0 with initial conditions y'(0) = 0 y(0) = 0 x(0) = 1
solve the laplace transform y''+4y'=8, y(0)=0, y'(0)=0
solve the laplace transform y''+4y'=8, y(0)=0, y'(0)=0