Question

Inital value Calculus 2 e^(-2x)*y’ = 24x(root(y+1)), y(0) = 0

Inital value Calculus 2

e^(-2x)*y’ = 24x(root(y+1)), y(0) = 0

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
solve the initial value problem: 2x-3e^(3x)y-e^(3x)y'=0 y(0)=2
solve the initial value problem: 2x-3e^(3x)y-e^(3x)y'=0 y(0)=2
given the differential equation y'+y=x^2+2x, compute the value of the solution y(x) at x=1 given the...
given the differential equation y'+y=x^2+2x, compute the value of the solution y(x) at x=1 given the inital condition y(0)=2. Also, use h=0.1
Question : y''+6y'+9y=0,y(0)=2,y'(0)=1 , 4y''+12y'+9y=0,y(0)=2,y'(0)=2 y''-y'-2y=cosx , y''+3y'+2y=x^2 - e^2x , y''-3y'+2y=sinx  , y''-2y'-3y=3e^2x
Question : y''+6y'+9y=0,y(0)=2,y'(0)=1 , 4y''+12y'+9y=0,y(0)=2,y'(0)=2 y''-y'-2y=cosx , y''+3y'+2y=x^2 - e^2x , y''-3y'+2y=sinx  , y''-2y'-3y=3e^2x
f_X,Y(x,y)=xy   0<=x<=1, 0<=y<=2 f_X(x)=2x   0<=x<=1,     f_Y(y)=y/2 0<=y<=2 choose the all correct things. a. E[X]=1/2 b. E[XY]=8/9 c. COV[X,Y]=1...
f_X,Y(x,y)=xy   0<=x<=1, 0<=y<=2 f_X(x)=2x   0<=x<=1,     f_Y(y)=y/2 0<=y<=2 choose the all correct things. a. E[X]=1/2 b. E[XY]=8/9 c. COV[X,Y]=1 d. correlation coefficiet =1
find the domain, sketch and sketch the level curve ofsquare root of 2x-y^2 +1
find the domain, sketch and sketch the level curve ofsquare root of 2x-y^2 +1
x'' = x - y' + y y'' = 2x' + 2x + y + e-t...
x'' = x - y' + y y'' = 2x' + 2x + y + e-t x(0)=0, x'(0)= -1, y(0)=1, y'(0)=1 solve the IVP by the Laplace transform.
Use intermediate theorem to show that theer is a root of f(x)=-e^x+3-2x in the interval (0,...
Use intermediate theorem to show that theer is a root of f(x)=-e^x+3-2x in the interval (0, 1)
Find the solution to the initial-value problem: y''+4y=2sin(2x), y(0)=1, y'(0)=0
Find the solution to the initial-value problem: y''+4y=2sin(2x), y(0)=1, y'(0)=0
Solve by undetermined coefficients (superposition approach) y''- 4y'+4y = e^(4x)+xe^(-2x) y(0) = 1 y'(0)= -1
Solve by undetermined coefficients (superposition approach) y''- 4y'+4y = e^(4x)+xe^(-2x) y(0) = 1 y'(0)= -1
y’ – y = 2x -1 y(0) = 1 , 0 ≤ x ≤ 0.2   ...
y’ – y = 2x -1 y(0) = 1 , 0 ≤ x ≤ 0.2    Use the Euler method to solve the following initial value problem (a) Check whether the function y = 2 ex -2x- 1 is the analytical solution ; (b) Find the errors by comparing the exact values you’re your numerical results (h = 0.05 and h = 0.1) and  Discuss the issue of numerical stability.