Question

(i) Use the Intermediate Value Theorem to prove that there is a number c such that...

(i) Use the Intermediate Value Theorem to prove that there is a number c such that 0 < c < 1 and cos (sqrt c) = e^c- 2.

(ii) Let f be any continuous function with domain [0; 1] such that 0smaller than and equal to f(x) smaller than and equal to 1 for all x in the domain. Use the Intermediate Value Theorem to explain why there must be a number c in [0; 1] such that f(c) =c

Homework Answers

Answer #2

answered by: anonymous
Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
a fixed point of a function f is a number c in its domain such that...
a fixed point of a function f is a number c in its domain such that f(c)=c. use the intermediate value theorem to prove that any continious function with domain [0,1] and range a subset of [0,1] must have a fixed point.[hint: consider the function f(x)-x] “Recall the intermediate value theorem:suppose that f is countinous function with domain[a,b]and let N be any number between f(a)and f(b), where f(a)not equal to f(b). Then there exist at least one number c in...
Use the Intermediate Value Theorem and the Mean Value Theorem to prove that the equation cos...
Use the Intermediate Value Theorem and the Mean Value Theorem to prove that the equation cos (x) = -2x has exactly one real root.
1.- Prove the intermediate value theorem: let (X, τ) be a connected topological space, f: X...
1.- Prove the intermediate value theorem: let (X, τ) be a connected topological space, f: X - → Y a continuous transformation and x1, x2 ∈ X with a1 = f (x1), a2 = f (x2) ( a1 different a2). Then for all c∈ (a1, a2) there is x∈ such that f (x) = c. 2.- Let f: X - → Y be a continuous and suprajective transformation. Show that if X is connected, then Y too.
Prove that f(x)=x*cos(1/x) is continuous at x=0. please give detailed proof. i guess we can use...
Prove that f(x)=x*cos(1/x) is continuous at x=0. please give detailed proof. i guess we can use squeeze theorem.
for the equation f(x) = e^x - cos(x) + 2x - 3 Use Intermediate Value Theorem...
for the equation f(x) = e^x - cos(x) + 2x - 3 Use Intermediate Value Theorem to show there is at least one solution. Then use Mean Value Theorem to show there is at MOST one solution
Prove the following theorem: Theorem. Let a ∈ R and let f be a function defined...
Prove the following theorem: Theorem. Let a ∈ R and let f be a function defined on an interval centred at a. IF f is continuous at a and f(a) > 0 THEN f is strictly positive on some interval centred at a.
1. Does the function satisfy the hypotheses of the Mean Value Theorem on the given interval?...
1. Does the function satisfy the hypotheses of the Mean Value Theorem on the given interval? f(x) = x3 + x − 5,    [0, 2] a) No, f is continuous on [0, 2] but not differentiable on (0, 2). b) Yes, it does not matter if f is continuous or differentiable; every function satisfies the Mean Value Theorem.     c) There is not enough information to verify if this function satisfies the Mean Value Theorem. d) Yes, f is continuous on [0,...
Use the intermediate value theorem to prove that the equation ln? = ? − square root(?)...
Use the intermediate value theorem to prove that the equation ln? = ? − square root(?) has atleast one solution between ?=2 and ?=3
Use the intermediate value theorem (only) to prove that any real polynomial of odd degree has...
Use the intermediate value theorem (only) to prove that any real polynomial of odd degree has at least one real solution. Is the same conclusion true if the degree is even?
Find the value of C > 0 such that the function ?C sin2x, if0≤x≤π, f(x) =...
Find the value of C > 0 such that the function ?C sin2x, if0≤x≤π, f(x) = 0, otherwise is a probability density function. Hint: Remember that sin2 x = 12 (1 − cos 2x). 2. Suppose that a continuous random variable X has probability density function given by the above f(x), where C > 0 is the value you computed in the previous exercise. Compute E(X). Hint: Use integration by parts! 3. Compute E(cos(X)). Hint: Use integration by substitution!
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT