Question

Describe both the transient and the steady-state solution of the forced spring-mass system: x'' + 2x'...

Describe both the transient and the steady-state solution of the forced
spring-mass system: x'' + 2x' + 3x = sin(t).

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider a damped forced mass-spring system with m = 1, γ = 2, and k =...
Consider a damped forced mass-spring system with m = 1, γ = 2, and k = 26, under the influence of an external force F(t) = 82 cos(4t). a) (8 points) Find the position u(t) of the mass at any time t, if u(0) = 6 and u 0 (0) = 0. b) (4 points) Find the transient solution uc(t) and the steady state solution U(t). How would you characterize these two solutions in terms of their behavior in time?...
Consider the forced spring-mass system: d^2x/dt^2 + ω^2 x = A sin (ωt) (3) where in...
Consider the forced spring-mass system: d^2x/dt^2 + ω^2 x = A sin (ωt) (3) where in general ω ̸= ω0. (a) Find the general solution to equation (3). (b) Find the solution appropriate for the initial conditions x(0) = 0 and dx dt (0) = 0. (c) Let’s explore what happens as resonance is approached: Let ω = ω0 (1 + ϵ), where ϵ ≪ 1. Expand your solution in (b) using the idea of a Taylor series about ω0...
The solution to the Initial value problem x′′+2x′+2x=2cos(7t),x(0)=0,x′(0)=0 is the sum of the steady periodic solution...
The solution to the Initial value problem x′′+2x′+2x=2cos(7t),x(0)=0,x′(0)=0 is the sum of the steady periodic solution xsp and the transient solution xtr. Find both xsp and xtr. xsp= xtr=
3. A mass of 5 kg stretches a spring 10 cm. The mass is acted on...
3. A mass of 5 kg stretches a spring 10 cm. The mass is acted on by an external force of 10 sin(t/2) N (newtons) and moves in a medium that imparts a viscous force of 2 N when the speed of the mass is 4 cm/s. If the mass is set in motion from its equilibrium position with an initial velocity of 3 cm/s, formulate the initial value problem describing the motion of the mass. Then (a) Find the...
A oscillating wave-energy-converter (WEC) can be modelled as a mass-spring system forced by sinusoidal waves. A...
A oscillating wave-energy-converter (WEC) can be modelled as a mass-spring system forced by sinusoidal waves. A simple model would be given by the following DE: x''(t) + x'(t) + Kx(t) = h sin(ωt), where x measures the position of the WEC; K is a tuning parameter, chosen so that the WEC resonates with the waves; h is the height of the waves; and ω is the frequency of the waves. (a) Find a particular solution for the model. (b) Using...
Assume an object with mass m=1 kg is attached to a spring with stiffness k=2 N/m...
Assume an object with mass m=1 kg is attached to a spring with stiffness k=2 N/m and lies on a surface with damping constant b= 2 kg/s. The object is subject to the external force F(t) = 4cos(t) + 2sin(t). Suppose the object starts at the equilibrium position (y(0)=0) with an initial velocity of y_1 (y'(0) = y_1). In general, when the forcing function F(t) = F*cos(γ*t) + G*sin(γ*t) where γ>0, the solution is the sum of a periodic function...
Solve the following differential equations. A spring has a constant of 4 N/m. The spring is...
Solve the following differential equations. A spring has a constant of 4 N/m. The spring is hooked a mass of 2 kg. Movement takes place in a viscous medium that opposes resistance equivalent to instantaneous speed. If the system is subjected to an external force of (4 cos(2t) - 2 sin(2t)) N. Determine: a. The position function relative to time in the transient state or homogeneous solution b. Position function relative to time in steady state or particular solution c....
A spring-mass system has a spring constant of 3 N/m. A mass of 2 kg is...
A spring-mass system has a spring constant of 3 N/m. A mass of 2 kg is attached to the spring, and the motion takes place in a viscous fluid that offers a resistance numerically equal to the magnitude of the instantaneous velocity. (a) If the system is driven by an external force of (12 cos 3t − 8 sin 3t) N, determine the steady-state response. (b) Find the gain function if the external force is f(t) = cos(ωt). (c) Verify...
Horizontal Block-Spring mass system, x= 2.0m Sin (3.0t) t is in seconds. (a) find the period...
Horizontal Block-Spring mass system, x= 2.0m Sin (3.0t) t is in seconds. (a) find the period and frequency (b) find the speed, position and acceleration at t=2.4. (c) find the mechanical energy of the system, spring constant and amplitude. Thank you in advance.
Consider the ‘spring-mass system’ represented by an ODE x′′ (t) + 16x(t) = 5 sin 4t...
Consider the ‘spring-mass system’ represented by an ODE x′′ (t) + 16x(t) = 5 sin 4t with ICs: x(0) = 2, x′ (0) = 1. Answer the questions (a)–(c): (a) Is there damping in the system? Why or why not? (b) Is there resonance in the system? Why or why not? (c) Solve the ODE.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT