Question

Describe both the transient and the steady-state solution of the forced spring-mass system: x'' + 2x'...

Describe both the transient and the steady-state solution of the forced
spring-mass system: x'' + 2x' + 3x = sin(t).

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider a damped forced mass-spring system with m = 1, γ = 2, and k =...
Consider a damped forced mass-spring system with m = 1, γ = 2, and k = 26, under the influence of an external force F(t) = 82 cos(4t). a) (8 points) Find the position u(t) of the mass at any time t, if u(0) = 6 and u 0 (0) = 0. b) (4 points) Find the transient solution uc(t) and the steady state solution U(t). How would you characterize these two solutions in terms of their behavior in time?...
Consider the forced spring-mass system: d^2x/dt^2 + ω^2 x = A sin (ωt) (3) where in...
Consider the forced spring-mass system: d^2x/dt^2 + ω^2 x = A sin (ωt) (3) where in general ω ̸= ω0. (a) Find the general solution to equation (3). (b) Find the solution appropriate for the initial conditions x(0) = 0 and dx dt (0) = 0. (c) Let’s explore what happens as resonance is approached: Let ω = ω0 (1 + ϵ), where ϵ ≪ 1. Expand your solution in (b) using the idea of a Taylor series about ω0...
The solution to the Initial value problem x′′+2x′+2x=2cos(7t),x(0)=0,x′(0)=0 is the sum of the steady periodic solution...
The solution to the Initial value problem x′′+2x′+2x=2cos(7t),x(0)=0,x′(0)=0 is the sum of the steady periodic solution xsp and the transient solution xtr. Find both xsp and xtr. xsp= xtr=
x''+x=cost 1-how do you find the transient solution? 2-Find the steady state solution? How do you...
x''+x=cost 1-how do you find the transient solution? 2-Find the steady state solution? How do you graph the phase portrait
3. A mass of 5 kg stretches a spring 10 cm. The mass is acted on...
3. A mass of 5 kg stretches a spring 10 cm. The mass is acted on by an external force of 10 sin(t/2) N (newtons) and moves in a medium that imparts a viscous force of 2 N when the speed of the mass is 4 cm/s. If the mass is set in motion from its equilibrium position with an initial velocity of 3 cm/s, formulate the initial value problem describing the motion of the mass. Then (a) Find the...
A oscillating wave-energy-converter (WEC) can be modelled as a mass-spring system forced by sinusoidal waves. A...
A oscillating wave-energy-converter (WEC) can be modelled as a mass-spring system forced by sinusoidal waves. A simple model would be given by the following DE: x''(t) + x'(t) + Kx(t) = h sin(ωt), where x measures the position of the WEC; K is a tuning parameter, chosen so that the WEC resonates with the waves; h is the height of the waves; and ω is the frequency of the waves. (a) Find a particular solution for the model. (b) Using...
Assume an object with mass m=1 kg is attached to a spring with stiffness k=2 N/m...
Assume an object with mass m=1 kg is attached to a spring with stiffness k=2 N/m and lies on a surface with damping constant b= 2 kg/s. The object is subject to the external force F(t) = 4cos(t) + 2sin(t). Suppose the object starts at the equilibrium position (y(0)=0) with an initial velocity of y_1 (y'(0) = y_1). In general, when the forcing function F(t) = F*cos(γ*t) + G*sin(γ*t) where γ>0, the solution is the sum of a periodic function...
Solve the following differential equations. A spring has a constant of 4 N/m. The spring is...
Solve the following differential equations. A spring has a constant of 4 N/m. The spring is hooked a mass of 2 kg. Movement takes place in a viscous medium that opposes resistance equivalent to instantaneous speed. If the system is subjected to an external force of (4 cos(2t) - 2 sin(2t)) N. Determine: a. The position function relative to time in the transient state or homogeneous solution b. Position function relative to time in steady state or particular solution c....
A spring-mass system has a spring constant of 3 N/m. A mass of 2 kg is...
A spring-mass system has a spring constant of 3 N/m. A mass of 2 kg is attached to the spring, and the motion takes place in a viscous fluid that offers a resistance numerically equal to the magnitude of the instantaneous velocity. (a) If the system is driven by an external force of (12 cos 3t − 8 sin 3t) N, determine the steady-state response. (b) Find the gain function if the external force is f(t) = cos(ωt). (c) Verify...
Horizontal Block-Spring mass system, x= 2.0m Sin (3.0t) t is in seconds. (a) find the period...
Horizontal Block-Spring mass system, x= 2.0m Sin (3.0t) t is in seconds. (a) find the period and frequency (b) find the speed, position and acceleration at t=2.4. (c) find the mechanical energy of the system, spring constant and amplitude. Thank you in advance.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT