Question

(i) Let u= (u1,u2) and v= (v1,v2). Show that the following is an inner product by...

(i) Let u= (u1,u2) and v= (v1,v2). Show that the following is an inner product by verifying that the inner product hold

<u,v>= 4u1v1 + u2v2 +4u2v2

(ii) Let u= (u1, u2, u3) and v= (v1,v2,v3). Show that the following is an inner product by verifying that the inner product hold

<u,v> = 2u1v1 + u2v2 + 4u3v3

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Suppose u = (u1,u2) and v = (v1, v2) are two vectors in R2. Explain why...
Suppose u = (u1,u2) and v = (v1, v2) are two vectors in R2. Explain why the operations (u * v) = u1v2 cannot be an inner product.
Question 6 Suppose u and v are vectors in 3–space where u = (u1, u2, u3)...
Question 6 Suppose u and v are vectors in 3–space where u = (u1, u2, u3) and v = (v1, v2, v3). Evaluate u × v × u and v × u × u.
If v1 and v2 are linearly independent vectors in vector space V, and u1, u2, and...
If v1 and v2 are linearly independent vectors in vector space V, and u1, u2, and u3 are each a linear combination of them, prove that {u1, u2, u3} is linearly dependent. Do NOT use the theorem which states, " If S = { v 1 , v 2 , . . . , v n } is a basis for a vector space V, then every set containing more than n vectors in V is linearly dependent." Prove without...
5. Let U1, U2, U3 be subspaces of a vector space V. Prove that U1, U2,...
5. Let U1, U2, U3 be subspaces of a vector space V. Prove that U1, U2, U3 are direct-summable if and only if (i) the intersection of U1 and U2 is 0.\, and (ii) the intersection of U1+U2 and U3 is 0. A detailed explanation would be greatly appreciated :)
Let R4 have the inner product <u, v>  =  u1v1 + 2u2v2 + 3u3v3 + 4u4v4...
Let R4 have the inner product <u, v>  =  u1v1 + 2u2v2 + 3u3v3 + 4u4v4 (a) Let w  =  (0, 6, 4, 1). Find ||w||. (b) Let W be the subspace spanned by the vectors u1  =  (0, 0, 2, 1), and   u2  =  (3, 0, −2, 1). Use the Gram-Schmidt process to transform the basis {u1, u2} into an orthonormal basis {v1, v2}. Enter the components of the vector v2 into the answer box below, separated with commas.
. Let v1,v2,v3,v4 be a basis of V. Show that v1+v2, v2+v3, v3+v4, v4 is a...
. Let v1,v2,v3,v4 be a basis of V. Show that v1+v2, v2+v3, v3+v4, v4 is a basis of V
Let V1 = R4 and V2 = R2. Let T : V1 → V2 be the...
Let V1 = R4 and V2 = R2. Let T : V1 → V2 be the map dened by T x1 x2 x3 x4 = x1 −x2 + x4 x1 + x2 + x3 + x4 . (a) Show that T is a linear transformation. (b) Let u1 = 1 0 0 −1 , u2 = 0 1 −2 1 .Show that ( u1, u2) is a basis of kerT. (c) Show that imT = V2. (Hint: Compute T(e1) and...
Let V be the set of all ordered pairs of real numbers. Consider the following addition...
Let V be the set of all ordered pairs of real numbers. Consider the following addition and scalar multiplication operations V. Let u = (u1, u2) and v = (v1, v2). • u ⊕ v = (u1 + v1 + 1, u2 + v2 + ) • ku = (ku1 + k − 1, ku2 + k − 1) 1)Show that the zero vector is 0 = (−1, −1). 2)Find the additive inverse −u for u = (u1, u2). Note:...
Let V be the set of all ordered pairs of real numbers. Consider the following addition...
Let V be the set of all ordered pairs of real numbers. Consider the following addition and scalar multiplication operations V. Let u = (u1, u2) and v = (v1, v2). • u ⊕ v = (u1 + v1 + 1, u2 + v2 + ) • ku = (ku1 + k − 1, ku2 + k − 1) Show that V is not a vector space.
Use the inner product (u, v) = 2u1v1 + u2v2 in R2 and the Gram-Schmidt orthonormalization...
Use the inner product (u, v) = 2u1v1 + u2v2 in R2 and the Gram-Schmidt orthonormalization process to transform {(?2, 1), (2, 5)} into an orthonormal basis. (Use the vectors in the order in which they are given.) u1 = ___________ u2 = ___________