Question

1.) Use the second derivative test to find the relative extrema for f(x) = x4 –...

1.) Use the second derivative test to find the relative extrema for f(x) = x4 – x3 - (1/2)x2 + 11. Also find all inflection points, discuss the concavity of the graph and sketch the graph.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Given f(x) = , f′(x) = and f′′(x) = , find all possible x2 x3 x4...
Given f(x) = , f′(x) = and f′′(x) = , find all possible x2 x3 x4 intercepts, asymptotes, relative extrema (both x and y values), intervals of increase or decrease, concavity and inflection points (both x and y values). Use these to sketch the graph of f(x) = 20(x − 2) . x2
Find all relative extrema of the function. Use the Second-Derivative Test when applicable. (If an answer...
Find all relative extrema of the function. Use the Second-Derivative Test when applicable. (If an answer does not exist, enter DNE.) f(x) = x4 − 4x3 + 7 relative maximum     (x, y) =     relative minimum     (x, y) =    
For f(x) xe-x ( a) Find the local extrema by hand using the first derivative and...
For f(x) xe-x ( a) Find the local extrema by hand using the first derivative and a sign chart. b) Find the open intervals where the function is increasing and where it is decreasing. c) Find the intervals of concavity and inflection points by hand. d) Sketch a reasonable graph showing all this behavior . Indicate the coordinates of the local extrema and inflections.
use the second derivative test to find the relative extrema if any of the function f(x)=x+576/x
use the second derivative test to find the relative extrema if any of the function f(x)=x+576/x
Use the second derivative to find the intervals where f(x) = x4+8x3 is concave upward and...
Use the second derivative to find the intervals where f(x) = x4+8x3 is concave upward and concave downward. Also find any points of inflection.
Find the relative extrema, if any, of the function. Use the Second Derivative Test if applicable....
Find the relative extrema, if any, of the function. Use the Second Derivative Test if applicable. (If an answer does not exist, enter DNE.) g(x) = x3 − 15x (a) relative maximum (x,y) = ____ (b) relative minimum (x,y) = ____
Consider the function f(x) = −x3 + 4x2 + 7x + 1. (a) Use the first...
Consider the function f(x) = −x3 + 4x2 + 7x + 1. (a) Use the first and second derivative tests to determine the intervals of increase and decrease, the local maxima and minima, the intervals of concavity, and the points of inflection. (b) Use your work in part (a) to compute a suitable table of x-values and corresponding y-values and carefully sketch the graph of the function f(x). In your graph, make sure to indicate any local extrema and any...
Find all relative extrema. Use second derivative test where applicable for ?(?) = 2 sin ?...
Find all relative extrema. Use second derivative test where applicable for ?(?) = 2 sin ? + cos 2? ,[0, 2 ?].
(a) Using the second derivative test, find the relative/local extrema (maxima and minima) of the function...
(a) Using the second derivative test, find the relative/local extrema (maxima and minima) of the function f(x) = −x 3 − 6x to the power of 2 − 9x − 2.
Given the function g(x) = x3-3x + 1, use the first and second derivative tests to...
Given the function g(x) = x3-3x + 1, use the first and second derivative tests to (a) Find the intervals where g(x) is increasing and decreasing. (b) Find the points where the function reaches all realtive maxima and minima. (c) Determine the intervals for which g(x) is concave up and concave down. (d) Determine all points of inflection for g(x). (e) Graph g(x). Label your axes, extrema, and point(s) of inflection.