Question

The velocity function of a particle is given by v(t) = 3t2 – 24t + 36....

The velocity function of a particle is given by v(t) = 3t2 – 24t + 36.

a) Find the equation for a(t), the acceleration.

b) If s(1) = 50, find the displacement function s(t).
c) When will the velocity be zero?

d) Find the distance the particle travels on [0, 4].

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1. (1’) The position function of a particle is given by s(t) = 3t2 − t3,...
1. (1’) The position function of a particle is given by s(t) = 3t2 − t3, t ≥ 0. (a) When does the particle reach a velocity of 0 m/s? Explain the significance of this value of t. (b) When does the particle have acceleration 0 m/s2? 2. (1’) Evaluate the limit, if it exists. lim |x|/x→0 x 3. (1’) Use implicit differentiation to find an equation of the tangent line to the curve sin(x) + cos(y) = 1 at...
17. The velocity function, in feet per second, is given for a particle moving along a...
17. The velocity function, in feet per second, is given for a particle moving along a straight line. v(t) = t2 − t − 132, 1 ≤ t ≤ 15 (a) Find the displacement (b) Find the total distance that the particle travels over the given interval.
A particle travels along a straight line with a velocity v=(12−3t^2) m/s , where t is...
A particle travels along a straight line with a velocity v=(12−3t^2) m/s , where t is in seconds. When t = 1 s, the particle is located 10 m to the left of the origin. Determine the displacement from t = 0 to t = 7 s. Determine the distance the particle travels during the time period given in previous part.
If the acceleration of a particle is given by a(t)=2t-1 and the velocity and position at...
If the acceleration of a particle is given by a(t)=2t-1 and the velocity and position at time t=0 are v(0)=0 and S(0)=2. 1. Find a formula for the velocity v(t) at time t. 2. Find a formula for the position S(t) at time t. 3. Find the total distance traveled by the particle on the interval [0,3].
The velocity function, in feet per second, is given for a particle moving along a straight...
The velocity function, in feet per second, is given for a particle moving along a straight line. v(t) = t^3 − 10t^2 + 29t − 20, 1 ≤ t ≤ 6 (a) Find the displacement. (b) Find the total distance that the particle travels over the given interval (solve in fraction form). a.) displacement ANSWER IS 175/12 Correct: Your answer is correct. b.) Find total displacement. (I only need to solve part B). =?
1-The velocity of a particle is v = { 6 i + ( 28 - 2...
1-The velocity of a particle is v = { 6 i + ( 28 - 2 t ) j } m/s, where t is in seconds. If r=0 when t=0, determine particle displacement during time interval t = 3 s to t = 8 s in the y direction. 2-A particle, originally at rest and located at point (1 ft, 4 ft, 5 ft), is subjected to an acceleration of a={ 3 t i + 17 t2k} ft/s. Determine magnitude...
The acceleration of an object (in m/s2) is given by the function a(t)=6sin(t). The initial velocity...
The acceleration of an object (in m/s2) is given by the function a(t)=6sin(t). The initial velocity of the object is v(0)= −1 m/s. Round your answers to four decimal places. a) Find an equation v(t) for the object velocity. v(t)= -6cos(t)+5 b) Find the object's displacement (in meters) from time 0 to time 3. 15-6sin(3) Meters c) Find the total distance traveled by the object from time 0 to time 3. ? Meters Need Help fast, please
The function s(t) describes the position of a particle moving along a coordinate line, where s...
The function s(t) describes the position of a particle moving along a coordinate line, where s is in feet and t is in seconds. s(t) = 3t2 - 6t +3 A) Find the anti-derivative of the velocity function and acceleration function in order to determine the position function. To find the constant after integration use the fact that s(0)=1. B) Find when the particle is speeding up and slowing down. C) Find the total distance from time 0 to time...
1. The velocity of a particle moving in a straight line is given by the function...
1. The velocity of a particle moving in a straight line is given by the function v (t) = 1.0t ^ 2 + 5.0 (m / s). Find the total displacement of the particle from t = 0 to t = 5.0 (s) using the definite integral of the function. 2. Find the position function for the following velocity function at t = 7.2t + 5.4 (m / s2), where we know that the initial velocity of the particle is...
The velocity v of a particle moving in the xy plane is given by v =...
The velocity v of a particle moving in the xy plane is given by v = (7.0t -4.0t2 )i + 7.5j, in m/s. Here v is in m/s and t (for positive time) is in s. What is the acceleration when t = 3.0 s? i-component of acceleration? j-component of acceleration? When (if ever) is the acceleration zero (enter time in s or 'never')? When (if ever) is the velocity zero (enter time in s or 'never')?