Question

1) Using the right endpoint with n = 4, approximate the area of the region bounded...

1) Using the right endpoint with n = 4, approximate the area of the region bounded by ? = 2?2 + 3, and x axis for x between 1 and 3.
2) Use Riemann sums and the limit to find the area of the region bounded by ?(?) = 3? − 4 and x-axis between x = 0 and x = 1

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Find the area of the region bounded by the graph of f(x) = 4x^3 + 4x...
Find the area of the region bounded by the graph of f(x) = 4x^3 + 4x + 9 and the x axis between x=0 and x=2 using Riemann sums.
Use the midpoint rule with 4 rectangles to approximate the area of the region bounded above...
Use the midpoint rule with 4 rectangles to approximate the area of the region bounded above by y=sin⁡x, below by the ?x-axis, on the left by x=0, and on the right by ?=?
Estimate the area of the region bounded between the curve f(x) = 1 x+1 and the...
Estimate the area of the region bounded between the curve f(x) = 1 x+1 and the horizontal axis over the interval [1, 5] using a right Riemann sum. Use n = 4 rectangles first, then repeat using n = 8 rectangles. The exact area under the curve over [1, 5] is ln(3) ≈ 1.0986. Which of your estimates is closer to the true value?
Use upper and lower sums (left and right Riemann sums) to approximate the area of the...
Use upper and lower sums (left and right Riemann sums) to approximate the area of the region below y =sqrt(8x) using 4 subintervals of each width. Round to three decimal places.
1- Find the area enclosed by the given curves. Find the area of the region in...
1- Find the area enclosed by the given curves. Find the area of the region in the first quadrant bounded on the left by the y-axis, below by the line   above left by y = x + 4, and above right by y = - x 2 + 10. 2- Find the area enclosed by the given curves. Find the area of the "triangular" region in the first quadrant that is bounded above by the curve  , below by the curve y...
Consider the region bounded by f(x) = x^3 + x + 3 and y = 0...
Consider the region bounded by f(x) = x^3 + x + 3 and y = 0 over [−1, 2]. a) Find the partition of the given interval into n subintervals of equal length. (Write ∆x, x0, x1, x2, · · · , xk, · · · , xn.) b) Find f(xk), and setup the Riemann sum ∑k=1 f(xk)∆x. c) Simplify the Riemann sum using the Power Sum Formulas. d) Find the area of the region by taking limit as n...
Let R be the region bounded above by f(x) = 3 times the (sqr root of...
Let R be the region bounded above by f(x) = 3 times the (sqr root of x) and the x-axis between x = 4 and x = 16. Approximate the area of R using a midpoint Riemann sum with n = 6 subintervals. Sketch a graph of R and illustrate how you are approximating it’ area with rectangles. Round your answer to three decimal places.
Instructions: Approximate the following definite integrals using the indicated Riemann sums. 1. Z 9 1 x...
Instructions: Approximate the following definite integrals using the indicated Riemann sums. 1. Z 9 1 x 1 + x dx using a left-hand Riemann sum L4 with n = 4 subintervals. 2. Z 3 0 x 2 dx using a midpont Riemann sum M3 using n = 3 subintervals. 3. Z 3 1 f(x) dx using a right-hand Riemann Sum R4, with n = 4 subintervals
use the limit of a sum process to find the net area of the region bounded...
use the limit of a sum process to find the net area of the region bounded by the curve y=x(3x-4) and the lines x=1, x=3 and y=0 (note: you do not need to find the actual area of that region
For the function f(x) = x, estimate the area of the region between the graph and...
For the function f(x) = x, estimate the area of the region between the graph and the horizontal axis over the interval 0≤x≤4 using a . a. Riemann Left Sum with eight left rectangles. b. Riemann Right Sum with eight right rectangles. c. A good estimate of the area.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT