Question

Evaluate ∫∫Sf(x,y,z)dS , where f(x,y,z)=0.4sqrt(x2+y2+z2)) and S is the hemisphere x2+y2+z2=36,z≥0

Evaluate ∫∫Sf(x,y,z)dS , where f(x,y,z)=0.4sqrt(x2+y2+z2)) and S is the hemisphere x2+y2+z2=36,z≥0

Homework Answers

Answer #1

Please thumbs up if it was helpful will be glad to know;)

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Calculate ∫ ∫S f(x,y,z)dS for the given surface and function. x2+y2+z2=144, 6≤z≤12; f(x,y,z)=z2(x2+y2+z2)−1.
Calculate ∫ ∫S f(x,y,z)dS for the given surface and function. x2+y2+z2=144, 6≤z≤12; f(x,y,z)=z2(x2+y2+z2)−1.
Let H be the hemisphere x2 + y2 + z2 = 54, z ≥ 0, and...
Let H be the hemisphere x2 + y2 + z2 = 54, z ≥ 0, and suppose f is a continuous function with f(2, 5, 5) = 9, f(2, −5, 5) = 11, f(−2, 5, 5) = 12, and f(−2, −5, 5) = 13. By dividing H into four patches, estimate the value below. (Round your answer to the nearest whole number.)    H f(x, y, z) dS
Evaluate the surface integral S F · dS for the given vector field F and the...
Evaluate the surface integral S F · dS for the given vector field F and the oriented surface S. In other words, find the flux of F across S. For closed surfaces, use the positive (outward) orientation. F(x, y, z) = yi − xj + 2zk, S is the hemisphere x2 + y2 + z2 = 4, z ≥ 0, oriented downward
Evaluate the surface integral ∫∫S F · dS for the given vector field F and the...
Evaluate the surface integral ∫∫S F · dS for the given vector field F and the oriented surface S. In other words, find the flux of F across S. For closed surfaces, use the positive (outward) orientation. F(x, y, z) = xz i + x j + y k S is the hemisphere x2 + y2 + z2 = 4, y ≥ 0, oriented in the direction of the positive y-axis. Incorrect: Your answer is incorrect.
Compute the surface integral over the given oriented surface: F=〈0,9,x2〉F=〈0,9,x2〉 ,  hemisphere x2+y2+z2=4x2+y2+z2=4, z≥0z≥0 ,  outward-pointing normal
Compute the surface integral over the given oriented surface: F=〈0,9,x2〉F=〈0,9,x2〉 ,  hemisphere x2+y2+z2=4x2+y2+z2=4, z≥0z≥0 ,  outward-pointing normal
Use spherical coordinates. Evaluate (2 − x2 − y2) dV, where H is the solid hemisphere...
Use spherical coordinates. Evaluate (2 − x2 − y2) dV, where H is the solid hemisphere x2 + y2 + z2 ≤ 25, z ≥ 0. H
Use spherical coordinates. Evaluate (2 − x2 − y2) dV, where H is the solid hemisphere...
Use spherical coordinates. Evaluate (2 − x2 − y2) dV, where H is the solid hemisphere x2 + y2 + z2 ≤ 25, z ≥ 0. H
Calculate the line integral of the vector field ?=〈?,?,?2+?2〉F=〈y,x,x2+y2〉 around the boundary curve, the curl of...
Calculate the line integral of the vector field ?=〈?,?,?2+?2〉F=〈y,x,x2+y2〉 around the boundary curve, the curl of the vector field, and the surface integral of the curl of the vector field. The surface S is the upper hemisphere ?2+?2+?2=36, ?≥0x2+y2+z2=36, z≥0 oriented with an upward‑pointing normal. (Use symbolic notation and fractions where needed.) ∫?⋅??=∫CF⋅dr= curl(?)=curl(F)= ∬curl(?)⋅??=∬Scurl(F)⋅dS=
Suppose f(x,y,z)=x2+y2+z2f(x,y,z)=x2+y2+z2 and WW is the solid cylinder with height 55 and base radius 44 that...
Suppose f(x,y,z)=x2+y2+z2f(x,y,z)=x2+y2+z2 and WW is the solid cylinder with height 55 and base radius 44 that is centered about the z-axis with its base at z=−1z=−1. Enter θ as theta. with limits of integration A = 0 B = 2pi C = 0 D = 4 E = -1 F = 4 (b). Evaluate the integral
Evaluate the surface integral S F · dS for the given vector field F and the...
Evaluate the surface integral S F · dS for the given vector field F and the oriented surface S. In other words, find the flux of F across S. For closed surfaces, use the positive (outward) orientation. F(x, y, z) = x2 i + y2 j + z2 k S is the boundary of the solid half-cylinder 0 ≤ z ≤ 25 − y2 , 0 ≤ x ≤ 3
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT