Question

Evaluate ∫∫Sf(x,y,z)dS , where f(x,y,z)=0.4sqrt(x2+y2+z2)) and S is the hemisphere x2+y2+z2=36,z≥0

Evaluate ∫∫Sf(x,y,z)dS , where f(x,y,z)=0.4sqrt(x2+y2+z2)) and S is the hemisphere x2+y2+z2=36,z≥0

Homework Answers

Answer #1

Please thumbs up if it was helpful will be glad to know;)

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Calculate ∫ ∫S f(x,y,z)dS for the given surface and function. x2+y2+z2=144, 6≤z≤12; f(x,y,z)=z2(x2+y2+z2)−1.
Calculate ∫ ∫S f(x,y,z)dS for the given surface and function. x2+y2+z2=144, 6≤z≤12; f(x,y,z)=z2(x2+y2+z2)−1.
Let H be the hemisphere x2 + y2 + z2 = 54, z ≥ 0, and...
Let H be the hemisphere x2 + y2 + z2 = 54, z ≥ 0, and suppose f is a continuous function with f(2, 5, 5) = 9, f(2, −5, 5) = 11, f(−2, 5, 5) = 12, and f(−2, −5, 5) = 13. By dividing H into four patches, estimate the value below. (Round your answer to the nearest whole number.)    H f(x, y, z) dS
] Evaluate the surface integral SF∙dS for the vector field Fx,y,z=xi+yj+zk , where S is the...
] Evaluate the surface integral SF∙dS for the vector field Fx,y,z=xi+yj+zk , where S is the surface given by z=1-x2-y2, z≥0 , where S has the positive (outward) orientation. Note: SF∙N dS=RF∙-gxx,yi-gyx,yj+kdA
Evaluate the surface integral S F · dS for the given vector field F and the...
Evaluate the surface integral S F · dS for the given vector field F and the oriented surface S. In other words, find the flux of F across S. For closed surfaces, use the positive (outward) orientation. F(x, y, z) = yi − xj + 2zk, S is the hemisphere x2 + y2 + z2 = 4, z ≥ 0, oriented downward
Evaluate the surface integral ∫∫S F · dS for the given vector field F and the...
Evaluate the surface integral ∫∫S F · dS for the given vector field F and the oriented surface S. In other words, find the flux of F across S. For closed surfaces, use the positive (outward) orientation. F(x, y, z) = xz i + x j + y k S is the hemisphere x2 + y2 + z2 = 4, y ≥ 0, oriented in the direction of the positive y-axis. Incorrect: Your answer is incorrect.
Use Stokes' Theorem to evaluate    S curl F · dS. F(x, y, z) = x2...
Use Stokes' Theorem to evaluate    S curl F · dS. F(x, y, z) = x2 sin(z)i + y2j + xyk, S is the part of the paraboloid z = 1 − x2 − y2 that lies above the xy-plane, oriented upward.
Compute the surface integral over the given oriented surface: F=〈0,9,x2〉F=〈0,9,x2〉 ,  hemisphere x2+y2+z2=4x2+y2+z2=4, z≥0z≥0 ,  outward-pointing normal
Compute the surface integral over the given oriented surface: F=〈0,9,x2〉F=〈0,9,x2〉 ,  hemisphere x2+y2+z2=4x2+y2+z2=4, z≥0z≥0 ,  outward-pointing normal
Use Stokes' Theorem to evaluate S curl F · dS. F(x, y, z) = x2 sin(z)i...
Use Stokes' Theorem to evaluate S curl F · dS. F(x, y, z) = x2 sin(z)i + y2j + xyk, S is the part of the paraboloid z = 1 − x2 − y2 that lies above the xy-plane, oriented upward.
Use spherical coordinates. Evaluate (2 − x2 − y2) dV, where H is the solid hemisphere...
Use spherical coordinates. Evaluate (2 − x2 − y2) dV, where H is the solid hemisphere x2 + y2 + z2 ≤ 25, z ≥ 0. H
Use spherical coordinates. Evaluate (2 − x2 − y2) dV, where H is the solid hemisphere...
Use spherical coordinates. Evaluate (2 − x2 − y2) dV, where H is the solid hemisphere x2 + y2 + z2 ≤ 25, z ≥ 0. H