Question

7. For the parametric curve x(t) = 2 − 5 cos(t), y(t) = 1 + 3...

7. For the parametric curve x(t) = 2 − 5 cos(t), y(t) = 1 + 3 sin(t), t ∈ [0, 2π) Part a: (2 points) Give an equation relating x and y that represents the curve. Part b: (4 points) Find the slope of the tangent line to the curve when t = π 6 . Part c: (4 points) State the points (x, y) where the tangent line is horizontal

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
For the parametric curve x(t) = 2−5cos(t), y(t) = 1 + 3sin(t), t ∈ [0,2π) Part...
For the parametric curve x(t) = 2−5cos(t), y(t) = 1 + 3sin(t), t ∈ [0,2π) Part a: Give an equation relating x and y that represents the curve. Part b: Find the slope of the tangent line to the curve when t = π/6 . Part c: State the points (x,y) where the tangent line is horizontal.
Consider the parametric curve C defined by the parametric equations x = 3cos(t)sin(t) and y =...
Consider the parametric curve C defined by the parametric equations x = 3cos(t)sin(t) and y = 3sin(t). Find the expression which represents the tangent of line C. Write the equation of the line that is tangent to C at t = π/ 3.
Find the derivative of the parametric curve x=2t-3t2, y=cos(3t) for 0 ≤ ? ≤ 2?. Find...
Find the derivative of the parametric curve x=2t-3t2, y=cos(3t) for 0 ≤ ? ≤ 2?. Find the values for t where the tangent lines are horizontal on the parametric curve. For the horizontal tangent lines, you do not need to find the (x,y) pairs for these values of t. Find the values for t where the tangent lines are vertical on the parametric curve. For these values of t find the coordinates of the points on the parametric curve.
1. Graph the curve given in parametric form by x = e t sin(t) and y...
1. Graph the curve given in parametric form by x = e t sin(t) and y = e t cos(t) on the interval 0 ≤ t ≤ π2. 2. Find the length of the curve in the previous problem. 3. In the polar curve defined by r = 1 − sin(θ) find the points where the tangent line is vertical.
4) Consider the polar curve r=e2theta a) Find the parametric equations x = f(θ), y =...
4) Consider the polar curve r=e2theta a) Find the parametric equations x = f(θ), y = g(θ) for this curve. b) Find the slope of the line tangent to this curve when θ=π. 6) a)Suppose r(t) = < cos(3t), sin(3t),4t >. Find the equation of the tangent line to r(t) at the point (-1, 0, 4pi). b) Find a vector orthogonal to the plane through the points P (1, 1, 1), Q(2, 0, 3), and R(1, 1, 2) and the...
Consider the parametric curve given by the equations: x = tsin(t) and y = t cos(t)...
Consider the parametric curve given by the equations: x = tsin(t) and y = t cos(t) for 0 ≤ t ≤ 1 (a) Find the slope of a tangent line to this curve when t = 1. (b) Find the arclength of this curve
Determine the tangent line at point t = π/3 of the curve defined by the parametric...
Determine the tangent line at point t = π/3 of the curve defined by the parametric equations: X = 2 sin (t) Y = 5 cos (t)
With the parametric equation x=cos(t)+tsin(t), y=sin(t)-tcos(t) , 0 ≤ t ≤ 2π) Find the length of...
With the parametric equation x=cos(t)+tsin(t), y=sin(t)-tcos(t) , 0 ≤ t ≤ 2π) Find the length of the given curve. (10 point)     2) In the circle of r = 6, the area above the r = 3 cos (θ) line Write the integral or integrals expressing the area of ​​this region by drawing. (10 point)
1) Consider the curve y = e^cos(x) . (a) Find y' (b) Use your answer to...
1) Consider the curve y = e^cos(x) . (a) Find y' (b) Use your answer to part (a) to find the equation of the tangent line to y = e^cos(x) at x = π/2. 2) 3)Consider the curve y = x + 1/x − 1 . (a) Find y' . (b) Use your answer to part (a) to find the points on the curve y = x + 1/x − 1 where the tangent line is parallel to the line...
Consider the parametric equations below. x = t sin(t),    y = t cos(t),    0 ≤ t ≤ π/3...
Consider the parametric equations below. x = t sin(t),    y = t cos(t),    0 ≤ t ≤ π/3 Set up an integral that represents the area of the surface obtained by rotating the given curve about the x-axis. Use your calculator to find the surface area correct to four decimal places
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT