Question

The population of a town was 2350 in 1980. In 2000, the population was 2550. Find...

The population of a town was 2350 in 1980. In 2000, the population was 2550. Find an exponential equation, P(t) that models this situation, where P is the population and t is the number of years since 1980. Also, in approximately how many years will the town’s population reach 3000?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The population of a region is growing exponentially. There were 35 million people in 1980 (when...
The population of a region is growing exponentially. There were 35 million people in 1980 (when t=0) and 70 million people in 1990. Find an exponential model for the population (in millions of people) at any time t, in years after 1980. P(t)= What population do you predict for the year 2000? Predicted population in the year 2000 = million people. What is the doubling time? Doubling time = years.
The population of a region is growing exponentially. There were 20 million people in 1980 (when...
The population of a region is growing exponentially. There were 20 million people in 1980 (when t=0) and 70 million people in 1990. Find an exponential model for the population (in millions of people) at any time tt, in years after 1980. P(t)= What population do you predict for the year 2000? Predicted population in the year 2000 = million people. What is the doubling time? Doubling time = years.
Requirement 1a. A. In​ 2000, the population of a country was approximately 5.63 million and by...
Requirement 1a. A. In​ 2000, the population of a country was approximately 5.63 million and by 2060 it is projected to grow to 11 million. Use the exponential growth model A=A0 ekt in which t is the number of years after 2000 and A0 is in​ millions, to find an exponential growth function that models the data. B. By which year will the population be 7 million? Requirement 1b. The exponential models describe the population of the indicated​ country, A,...
In 2000, the population of Montrose, GA was 153. By 2010, the population had increased to...
In 2000, the population of Montrose, GA was 153. By 2010, the population had increased to 215. (a) Find the linear model L(t) that gives the population of Montrose t years after 2000. (b) Find the exponential model E(t) that gives the population of Montrose t years after 2000. (c) What do each of the models predict that the population of Montrose will be by 2020?
The population of the world was about 5.3 billion in 1990 (t = 0) and about...
The population of the world was about 5.3 billion in 1990 (t = 0) and about 6.1 billion in 2000 (t = 10). Assuming that the carrying capacity for the world population is 50 billion, the logistic differential equation dP =kP(50−P)dt models the population of the world P(t) (measured in billions), where t is the number of years after 1990. Solve this differential equation for P(t) and use this solution to predict what the population will be in 2050 according...
The following table shows the population in a town in the given year. Year 1960 1970...
The following table shows the population in a town in the given year. Year 1960 1970 1980 1990 2000 Population 2005 2549 3100 3670 4010                   a) Which is the independent variable? Which is the dependent variable?                                     Independent: _____________             Dependent: _______________                   b) Find the percent change in population from 1980 to 1990.                   c) Find the average growth rate in population from 1980 to 1990.                   d) Use interpolation to estimate the number of people in 1984. Round...
Suppose the population of a town was 40,000 on January 1, 2010 and was 50,000 on...
Suppose the population of a town was 40,000 on January 1, 2010 and was 50,000 on January 1, 2015. Let P(t) be the population of the town in thousands of people t years after January 1, 2010. Build an exponential model (in the form P(t) = a bt ) that relates P(t) and t. Round the value of b to 5 significant figures. a = ? b = ?
Suppose the population of a town was 40,000 on January 1, 2010 and was 50,000 on...
Suppose the population of a town was 40,000 on January 1, 2010 and was 50,000 on January 1, 2015. Let P(t) be the population of the town in thousands of people t years after January 1, 2010. (a) Build an exponential model (in the form P(t) = a*bt ) that relates P(t) and t. Round the value of b to 5 significant figures. (b) Write the exponential model in the form P(t) = a*ekt. According to this model, what is...
The population P (in thousands) of a certain city from 2000 through 2014 can be modeled...
The population P (in thousands) of a certain city from 2000 through 2014 can be modeled by P = 160.3e ^kt, where t represents the year, with t = 0 corresponding to 2000. In 2007, the population of the city was about 164,075. (a) Find the value of k. (Round your answer to four decimal places.) K=___________ Is the population increasing or decreasing? Explain. (b) Use the model to predict the populations of the city (in thousands) in 2020 and...
1. Find a function f given that the slope of the tangent line to the graph...
1. Find a function f given that the slope of the tangent line to the graph of f at any point P(x, y) is given by y' = − 4xy x2 + 1 and the graph of f passes through the point (2, 1). 2. The world population at the beginning of 1980 (t = 0) was 4.5 billion. Assuming that the population continued to grow at the rate of approximately 2%/year, find a function Q(t) that expresses the world...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT